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The mechanics community lost one of its disti
guished members with the passing away of E. Tu
Onat in New Haven, Connecticut, on July 4, 2000 d
to an inoperable cancer.

Onat was a native of Turkey and came from a prom
nent family. His father was a general in the judici
branch of the army, and his brother and sister live
Istanbul. He received the degrees of Dipl. Ing. in 19
and the Doctor of Science in 1951 from the Istanb
Technical University. As part of his doctoral studies,
served as a Research Fellow at the Paris Academ
1950.

He came to the U.S. in 1951 as a Post-Doctoral F
low at Brown University. There he engaged in the r
search on plasticity that was in full development
Brown during the 1950’s. His research in that period
characterized by the rigorous treatment of proble
that clarify and illustrate the underlying principles o
plasticity theory. These features are exemplified
work with R. T. Shield on combined bending and twis
ing of tubes in the plastic range; with W. Prager o
limit analysis of arches, on plane strain necking in te
sion, and collapse and limit load analysis of vario
structures; and with D. C. Drucker on the stability
inelastic systems.

In 1954, Onat returned to Turkey for his compulso
military duty and served as a lieutenant attached to
scientific advisory board of the Turkish general sta
He came back to Brown University in 1957 as an A
sociate Professor of Engineering and was promoted
full Professor in 1960. He was awarded a Guggenhe
Fellowship for the academic year 1963–1964, duri
which he served as Visiting Professor at Cambrid
University and at the Istanbul Technical University.

In 1965, he joined the engineering faculty of Ya
University, where he remained. At Yale, he partic
pated fully in the intellectual, artistic, and social life o
the university. He developed teaching and research
laborations with Yale colleagues in the departments
geology, mathematics, and the medical school. He w
a Fellow of Ezra Stiles College at Yale from 1965
1990. Together with his wife, Etta, who taught in th
English Department and served as an Associate D
of Humanities in Yale’s Graduate School, he served
interim resident Master of Ezra Stiles College in 199
and later, from 1990–1995, as Master of Calhoun C
lege. In these roles, Turan and Etta looked after
personal needs of several hundred undergraduate
the residential college. They were frequently in atte
dance at the numerous student musical and theat
performances at Yale, and at gallery exhibitions.
was loved by the students, and during one of my vis
we were serenaded by a group of young lady stude
at the university restaurant.

Onat had an abiding interest in structures and str
tural mechanics. Research at Brown dealt with critic
aspects of the plastic behavior of beam, frame, ar
plate, shell, and membrane structures, including fun
mentals of plastic stability~with D. C. Drucker!, the
influence of large displacements and resulting geo
etry change on continuing fully plastic deformatio
~with R. M. Haythornthwaite!, and effects of coupled
axial and shear loading on bending response~with W.
Prager; R. T. Shield!. R. H. Lance collaborated with
him in plastic analysis of conical shells. Along with h
of Applied Mechanics
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technical interests
in structures, his ar-
tistic and aesthetic
appreciation of ar-
chitecture led Onat
to develop highly
popular structures
and structural me-
chanics courses. He
was especially fond
of his collection of
model structures
designed and as-
sembled by stu-
dents in these
courses.

Two studies of
plastic necking
~with Prager! and buckling~with G. R. Cowper! were
particularly important applications of plastic stabilit
and continuing limit-load behavior. The necking sol
tion with Prager featured a pair of centrally intersecti
slip-lines separating four rigid blocks in relative mo
tion. A physical realization of the idealization can b
found in tension of single crystals oriented for symme
ric double slip. R. J. Asaro once showed Onat an a
minum alloy crystal that had been deformed in h
manner, and the crystal contained a small-diame
hole where the shear-bands crossed. Delighted with
correspondence of the crystal with his solution, On
~unsuccessfully! asked Asaro to give him the specime
so he could make a tie-clasp of it.

In the early 1960s, Onat also investigated plas
wave propagation in membranes due to transverse
pact, and the creep of metals subjected to increme
changes in loading. He was also concerned with fun
mental issues in linear viscoelasticity, such as uniq
ness, and published papers with S. Breuer on the s
ject.

One of the major scientific contributions of Onat wa
his rigorous treatment of the role of internal state va
ables in constitutive theories. During the mid 1960s,
advocated the now nearly universally adopted const
tive formalism based on the evolution of internal sta
variables, in distinction to a competing hereditary int
gral equation constitutive formalism inherited from lin
ear viscoelasticity. He emphasized that the more n
linear the behavior, the more terms~kernels! were
required in the hereditary integral representation, wh
systems of first-order nonlinear differential equatio
representing evolution of state parameters offered g
flexibility within a unifying framework. His work sub-
sequently focused on unified constitutive equations
creep and plasticity which essentially depend on va
ables whose current values encompass all previ
loading histories. Particular internal state variabl
used in such equations are intended to represent
various hardening effects, and continuum dama
which can lead to tertiary creep. His studies on t
identification and properties of those variables ha
served to guide the formulation of appropriate cons
tutive theories for elastic-viscoplastic media.

Onat’s later work was directed to developing intern
variable approaches to large deformation viscoplas
JANUARY 2001, Vol. 68 Õ 1
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2 Õ Vol
ity, and on approaches based on group theory for
representation of tensorial symmetries present in
internal state variables. Major collaborators in these
deavors included F. A. Leckie~creep damage!, J. P.
Boehler~elastic symmetries!, E. H. Lee~large deforma-
tion plasticity!, and B. L. Adams~representation of
polycrystal microstructure!.

Onat was much appreciated by the mechanics co
munity for his special personal qualities, as well as
his scientific influence. His charming personality a
gracious manner endeared him to his colleagues
associates, some of whom became close friends.
was an outdoorsman and, in Providence, shared a
boat~‘‘Tresca’’! with Dick Shield to sail on Narragan
sett Bay, with myself as an occasional passenger.
Boston Whaler helped him catch many bluefish
Long Island Sound. At Yale, Onat obtained his pilot
license for a light plane, and became a proficient a
serious pilot. He enjoyed drawing and was almo
never without his sketchbook. Other avocations
cluded gardening and long walks in the woods close
his home in Woodbridge, near New Haven.

As part of his scholarly and cultural interests, On
traveled to a number of places and served as Visit
Professor in Cambridge and Oxford Universities, a
worked with collaborators at the National Polytechn
Institute of Grenoble, the University of Illinois a
Urbana-Champaign, the Istanbul Technical Univers
. 68, JANUARY 2001
e
e
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where he received a special honor in 1999, Ru
Bochum University in Germany, Tianjin University in
China, and the University of Rio Grande do Sul
Porto Alegre, Brazil. He delivered invited lectures
India, Israel, Italy, Poland, Spain, and Switzerland. H
won the Senior Scientist Award of the Alexander vo
Humbolt Foundation in 1989. He was a member
ASME, the American Mathematical Society, the Soc
ety for Natural Philosophy, Sigma Xi, and the Amer
can Academy of Mechanics, of which he was elect
Fellow in 1980.

Onat’s final months were difficult, both for him an
for those near him, but he retained his smile, his go
humor, and his love of life and the life of the mind. H
will be missed.

He is survived by his wife, Etta Onat, of Wood
bridge, Connecticut, his son, Yasar Onat, of New H
ven; his daughter-in-law, Wendy Natter and his gran
daughter, Rebecca Onat, of Guilford, Connecticut,
brother, Dogan Onat, and his sister, Meral Aras, bo
of Istanbul.

Sol R. Bodner
Technion-Israel Institute of Technology, Haif

with the collaboration of
David Parks

MIT, Cambridge, Massachusett
Transactions of the ASME
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Elastic Fields in Double
Inhomogeneity by the Equivalent
Inclusion Method
Consider a double-inhomogeneity system whose microstructural configuration is
posed of an ellipsoidal inhomogeneity of arbitrary elastic constants, size, and orient
encapsulated in another ellipsoidal inhomogeneity, which in turn is surrounded b
infinite medium. Each of these three constituents in general possesses elastic co
different from one another. The double-inhomogeneity system under consideration i
jected to far-field strain (stress). Using the equivalent inclusion method (EIM), the do
inhomogeneity is replaced by an equivalent double-inclusion (EDI) problem with pr
polynomial eigenstrains. The double inclusion is subsequently broken down to s
inclusion problems by means of superposition. The present theory is the first to obta
actual distribution rather than the averages of the field quantities over the double i
mogeneity using Eshelby’s EIM. The present method is precise and is valid for th
well as thick layers of coatings, and accommodates eccentric heterogeneity of arb
size and orientation. To establish the accuracy and robustness of the present metho
for the sake of comparison, results on some of the previously reported problems,
are special cases encompassed by the present theory, will be re-examined. The fo
tions are easily extended to treat multi-inhomogeneity cases, where an inhomogen
surrounded by many layers of coatings. Employing an averaging scheme to the p
theory, the average consistency conditions reported by Hori and Nemat-Nasser fo
evaluation of average strains and stresses are recovered.@DOI: 10.1115/1.1346680#
i
w
y

c

e
p
a

s
a
i
a
t
r
e

a

e

e
eity
of
s and
ld

o-
fied.
o
ting

ity
tion
in

oc-
een
uch

the
r-

c

e
w
M

1 Introduction
Often, during the processing of composites due to chem

interactions, an undesirable phase called interphase forms bet
the fiber and the matrix. In other situations, coating technolog
employed to reduce the large residual tensile stresses betwee
fiber and the matrix, and consequently to prevent matrix crack
in cool-down processes. Also, coating is used to improve ele
cal conductivity of composites, or to provide a protective lay
against aggressive corrosive agents. Existence of high stress
centration just outside a coated/uncoated fiber is a well-kno
phenomenon. The overall behavior of composite materials
greatly altered by their microconstituents such as interface lay
as well as geometry and distribution of phases. It should be
phasized that even though coatings are usually very thin, they
an important role in controlling the failure mechanisms and fr
ture toughness of a material.

In the present study inclusions and inhomogeneities are dif
entiated as follows: An inclusion is a finite domain with eige
strain e i j* whose elastic moduli are the same as those of its
rounding matrix, whereas an inhomogeneity is a finite dom
whose elastic moduli differ from those of its surrounding matr
The problems of single and multi-inhomogeneity of arbitrary el
tic constants surrounded by a matrix of different elastic proper
have been addressed by several investigators. A brief summa
some relevant theoretical treatments on the subject are pres
in this section. A more complete and fairly updated review
given by Mura et al.@1#. One of the well-known and fundamenta
theories is due to Eshelby’s@2–4# for a single-ellipsoidal inclu-
sion. Eshelby first showed that when an isotropic infinite dom

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
7, 1999; final revision, June 14, 2000. Associate Editor: D. Kouris. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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surrounds an ellipsoidal inclusionV with uniform eigenstraine i j* ,
then the straine i j is also uniform inV and is expressed by

e i j 5Si jkl ekl* , xPV, (1)

whereSi jkl is the Eshelby’s tensor which is uniform,

Si jkl 5E
V

G i jkl ~x2x8!dx8, (2a)

G i jkl ~x2x8!52
1
2 Cmnkl@Gim,n j~x2x8!1Gjm,ni~x2x8!#,

(2b)

where Gi j (x2x8) is the fundamental solution satisfying th
Green’s functions problem

Ci jkl Gkp,l j ~x2x8!1d ipd~x2x8!50, (3)

which is associated with the equilibrium equations.d~x2x8! is
Dirac’s delta function andd ip is the Kronecker delta. Then h
extended his treatment to the case of an ellipsoidal inhomogen
by reducing it to an inclusion problem with a proper choice
eigenstrains. These eigenstrains and consequently the stres
strain fields inside the inhomogeneity are uniform if the far-fie
applied stress~strain! is uniform. This treatment, which is known
as ‘‘the equivalent inclusion method’’~EIM!, is valid only for a
single inhomogeneity. If the body contains two or more inhom
geneities which are interacting, then the method must be modi
Moschovidis and Mura@5# have extended EIM to the case of tw
interacting ellipsoidal inhomogeneities that are nonintersec
and occupy different points in space.

To date, unlike single-inclusion and single-inhomogene
problems which have been studied extensively, not much atten
has been given to the determination of the local elastic fields
the case of the double-inhomogeneity problem. This problem
curs when a layer of different elastic properties is added betw
an inhomogeneity and its surrounding matrix. In general, for s
a situation the stress and strain fields inside the coating and
core inhomogeneity will no longer be uniform, even if the fa

t.
the
nt of
ill
E

001 by ASME JANUARY 2001, Vol. 68 Õ 3



u
h
h

n

t
u

o
f

t

e
h
n
o

t
h

fi

p

h
t
n

z
t
c

i

n

p

t

ori-
ote

he

r

le-

-

ipal
ge-

of

n-
e

d

lso
r

of
field loading is uniform; see, for example, Chen et al.@6#. Conse-
quently, it may lead one to believe that Eshelby’s method wo
not be applicable to such problems. As a result, researchers
employed approximations and other complicated approac
Some of these methods are given by Walpole@7#, Mikata and
Taya@8#, and Benveniste et al.@9#. It is interesting to note that for
a double-inhomogeneity system under uniform far-field loadi
there are situations when the stress and strain fields become
form in the core inhomogeneity only. For instance, it can easily
verified from the treatments given by Christensen and Lo@10# that
for isotropic three-phase spherically and cylindrically concen
solids subjected to uniform far-field loading, the stresses are
form in the core inhomogeneity. This result can also be dedu
from the paper of Chen et al.@6# on three-phase cylindrically
concentric inhomogeneities, when the core inhomogeneity
transversely isotropic. On the other hand, it can be observed f
the results obtained by Chen et al. that when the core inhom
neity is not transversely isotropic, the stresses cease to be uni
there.

Walpole@7# considers an inhomogeneity with a very thin coa
ing in an infinite domain under mechanical loading. To handle
complexities of the interface layer he assumes thin enough coa
such that its existence has very little bearing on the elastic fi
inside the central particle. With this simplifying assumption
makes use of Hill’s theorem~@11#! to find the stress and strai
components at the interface. He points out that even for thin c
ing, his analysis looses validity when coating is excessively s
or rigid. Mikata and Taya@8# only consider the axisymmetric
problem of the short coated fiber in an infinite domain subjec
to axisymmetric loading conditions. They model a short coa
fiber as two confocal spheroids. They claim that Eshelby’s met
cannot be employed in this problem and use Boussine
Sadowsky stress functions in their analysis to find the stress
in and around a coated fiber. Benveniste et al.@9#, on the basis of
Benveniste’s@12# re-examination of Mori-Tanaka’s theory, pre
sented a micromechanical model and computed approxim
stress fields and overall thermomechanical properties of com
ites with coated inhomogeneities. To date, no general and e
solution of the double-inhomogeneity problem pertaining calcu
tion of elastic fields inside the inhomogeneity and its coating
been given. However, an analytical treatment for the calcula
of average field quantities within these domains has been give
Hori and Nemat-Nasser@13# and Nemat-Nasser and Hori@14#.
They use Eshelby’s method and present a more general th
than the one due to Tanaka and Mori’s theorem~@15#! namely
‘‘the double-inclusion model.’’ In their treatment, they generali
the double-inclusion to a multi-inclusion model and show that
average elastic fields over a set of nested ellipsoidal regions
sisting of innermost inhomogeneity and its surrounding layers
coatings can be computed exactly, provided that the prescr
eigenstrains are uniform but different within each annulus, and
necessarily uniform in the core.

In Section 2 of this paper, following Eshelby’s EIM and th
method of Moschovidis and Mura@5# and Mura@16#, a general
treatment of double inhomogeneity is presented. In Section 3,
method is extended to multi-inhomogeneity system, where an
lipsoidal inhomogeneity is surrounded by many layers of coati
of ellipsoidal shape. In this analysis the core and its coatings
have arbitrary elastic properties, orientations, positions, and as
ratios. In Section 4 some numerical examples are presente
verify the accuracy and robustness of the method. For this
pose, some relevant problems considered by other investiga
will be reexamined by the present method. In Appendix B, it
shown that the average field quantities obtained over each ann
and core of the multi-inhomogeneity configuration will be exac
the same as those obtained by Hori and Nemat-Nasser@13#.

2 Formulation of the Double-Inhomogeneity Problem
Consider a solid consisting of a double-inhomogene

S5CøV embedded in an isotropic infinite mediumF, whereC
4 Õ Vol. 68, JANUARY 2001
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andV have ellipsoidal shapes and arbitrary elastic properties,
entations, positions, and aspect ratios, as depicted in Fig. 1. N
thatC andV may be either isotropic or anisotropic materials. T
elastic moduli of the coreV, annulusC5S2V, and matrixF2S
are denoted byC1, C2, andC, respectively. The medium is unde
uniform far-field stress,s i j

0 ~strain,e i j
0 ! so that

s i j
0 5Ci jkl ekl

0 . (4)

Unlike Eshelby’s single-inhomogeneity problem, in the doub
inhomogeneity case, the stress and strain fields inV will no longer
be uniform, when subjected to constant far-field stress~strain! due
to the presence of regionC and its interaction with the inhomo
geneityV.

Let x andx̄ denote the Cartesian coordinates with originso and
ō located at the center of ellipsoidsS andV, respectively. More-
over, the coordinate axes are taken to coincide with the princ
axes of the ellipsoids, as shown in Fig. 1. The double inhomo
neity is replaced with the equivalent double inclusion~EDI!
shown in Fig. 2. This equivalency holds for proper choice
homogenizing eigenstrainsē i j*

(1)( x̄) ande i j*
(2)(x) defined over the

regionsV and C, respectively. As mentioned earlier, the eige
strainsē i j*

(1)( x̄), ande i j*
(2)(x) are not uniform, and indeed can b

expanded in terms of space variables

ē i j*
~1!~ x̄!5a i j* 1a i jk* x̄k1a i jkl* x̄kx̄l1 . . . , x̄PV, (5a)

e i j*
~2!~x!5b i j* 1b i jk* xk1b i jkl* xkxl1 . . . , xPC, (5b)

where ē i j*
(1)( x̄) and e i j*

(2)(x) are continuous, differentiable, an
symmetric with respect to indicesi and j. Thus the constantsa i j* ,
a i jk* , . . . are symmetric with respect to the free indices and a
a i jkl* 5a i j lk* , a i jklm* 5a i jkml* , etc. Similar symmetries hold fo
b*s. The tensors referring to thex̄-coordinate are indicated by
bars. The components of a Cartesian tensorA of ordern associ-
ated with thex-coordinate are transformed to the components
the tensorĀ according to the following relation:

Āi j . . . k5qil qjm . . . qknAlm . . . n , (6)

Fig. 1 Double inhomogeneity SÄC V embedded in an infi-
nite medium F. S and V have arbitrary orientations, and C1, C2

and C are distinct
Transactions of the ASME
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Fig. 2 Double inhomogeneity is replaced by an EDI with proper ho-
mogenizing polynomial eigenstrains
e

r

be
th

-
s is

in

h a

r-
whereqi j is the transformation tensor. The eigenstrains give r
to a disturbance in the strain fields over the regionsV and C
denoted byē i j

d(1)( x̄) ande i j
d(2)(x), respectively, which can be ex

panded as follows:

ē i j
d~1!~ x̄!5j i j

d 1j i jk
d x̄k1j i jkl

d x̄kx̄l1 . . . , x̄PV, (7a)

e i j
d~2!~x!5h i j

d 1h i jk
d xk1h i jkl

d xkxl1 . . . , xPC, (7b)

wherejds andhds have symmetry properties similar to those
á*s andb*s. It should be emphasized that the interaction betw
the inhomogeneitiesV andC is inherent in the disturbance strain
ē i j

d(1)( x̄) ande i j
d(2)(x).

Employing the EIM, the following consistency conditions a
obtained:

C̄i jkl
1 ~ ēkl

0 1 ēkl
d~1!~ x̄!!5Ci jkl ~ ēkl

0 1 ēkl
d~1!~ x̄!2 ēkl*

~1!~ x̄!!, x̄PV,
(8a)

Ci jkl
2 ~ekl

0 1ekl
d~2!~x!!5Ci jkl ~ekl

0 1ekl
d~2!~x!2ekl*

~2!~x!!, xPC.
(8b)
cs
ise

-

of
en
s

e

Suppose that the polynomials given by expressions~5! and~7! for
the eigenstrains and the disturbance strains are of degreem. Let
the corresponding number of coefficients in each expression
equal tom8. Equating the coefficients of like powers on bo
sides of Eqs.~8! result in 12m8 equations with 24m8 unknown
coefficients,a*s, b*s, zds, andhds. In the remainder of this sec
tion, the remedy to obtain the necessary additional equation
outlined.

With the aid of superposition we decompose the EDI shown
Fig. 2 to the algebraic sum of an infinite domainF under uniform
far-field stress,s i j

0 , an inclusionS with eigenstraine i j*
(2)(x) sur-

rounded by the infinite mediumF2S, and an inclusionV sur-
rounded by the infinite mediumF2V with eigenstrainse i j*

(1)(x)

ande i j*
(2)(x), respectively. The schematic representation of suc

superposition is illustrated in Fig. 3.
According to the superposition shown in Fig. 3, the distu

bances in strain fieldsē i j
d(1)( x̄) ande i j

d(2)(x) are given by
Fig. 3 Decomposition of the EDI problem to a domain under uniform
far-field stress and three single-inclusion problems with proper polyno-
mial eigenstrains
JANUARY 2001, Vol. 68 Õ 5



a

e

i

2
t
s

t

-

t

vi-
to

e

sed

n

us

n of
the
cy
y
rage

red.

of
or
racy
sti-
ē i j
d~1!~ x̄!5 ē i j

S~ x̄; ē* ~2!!1 ē i j
V~ x̄; ē* ~1!!2 ē i j

V~ x̄; ē* ~2!!, x̄PV,
(9a)

e i j
d~2!~x!5e i j

S~x;e* ~2!!1e i j
V~x;e* ~1!!2e i j

V~x;e* ~2!!, xPC,
(9b)

wheree i j
a (x;e* ( i )) is the disturbance strain in regiona ~a being

domainsS or V! at pointx due to the eigenstraine* ( i ) ~i being 1
or 2 correspond to the homogenizing eigenstrain defined over
regionsV or C, respectively!. The disturbance straine i j

a (x;e* ( i ))
is given by

e i j
a~x;e* ~ i !!5E

a
G i jmn~x2x8!emn* ~ i !~x8!dx8, (10)

whereG i jmn(x2x8) is defined by the expression~2b!. Whena is
an inclusion in an isotropic infinite body, where the eigenstr
field in a is in the form of polynomials of coordinates

e i j* ~x!5z i j* 1z i jk* xk1z i jkl* xkxl1 . . . , (11)

then the disturbance in strain field is given by

e i j
a~x;e* ~ i !!5g i jkl ~x!zkl* 1g i jklq~x!zklq* 1g i jklqr ~x!zklqr* 1 . . . ,

(12)

where the tensorsg i jkl . . . are Eshelby’s tensors~@4#!. We select
two distinct pointsx̄PV and xPC at which the evaluation of
elastic fields are desirable. It should be emphasized thatx̄ is an
interior point of domainsV andC but x, which is an interior point
of domainC, is an exterior point with respect to regionV. Es-
helby showed that, ifx is an interior point of the ellipsoidal in-
clusion a, and the eigenstrain in the inclusion is anmth order
polynomial of the form given by the expression~11!, then accord-
ing to ~12! e i j

a (x;e* ( i )) will be an inhomogeneous polynomial inx
whose terms are of degreem,(m22),(m24), . . . ~see Appendix
A!. Asaro and Barnett@17# obtained similar results for a singl
anisotropic ellipsoidal inclusion. On the other hand, ifx is an
exterior point of the inclusiona, then Taylor’s expansion of the
tensorsg i jkl . . . about pointx is used~see Appendix A!. In view of
the above discussions, an appropriate substitution forg i jkl . . . into
~12! leads to a new expression fore i j

a (x;e* ( i )) in terms of poly-
nomials of coordinates. Consequentlyē i j

d(1)( x̄) and e i j
d(2)(x) in

Eqs. ~9! can be expressed in terms of polynomials of degreem.
After conversion of Eqs.~9! to new sets of expansions forēd(1)

and ed(2) in the manner explained above, the coefficients of l
powers from these new expansions are equated to those from
~7! to yield 12m8 additional equations, hence completing the ne
essary systems of equations.

3 Extension to Multi-Inhomogeneity Systems
The theory presented for double inhomogeneity in Section

easily extended to the multi-inhomogeneity problem in which
interphase material surrounding the core inhomogeneity i
multilayer. The core and the layers are of ellipsoidal shape w
arbitrary elastic properties, orientations, positions, and aspec
tios. The schematic representation of such a system, consistin
the core andn layers of coatings, is illustrated in Fig. 4. Th
ellipsoids are ordered asS1[C1,S2,S3, . . . ,Sn11 such
that for the layeri indicated byC i we have

C i5S i2S i 21 , i 52,3, . . . ,n11, (13)

where the coreS1 and each regionC i have arbitrary elastic con
stants C1 and Ci , i 52,3, . . . ,n11, respectively. The multi-
inhomogeneity is surrounded by the matrixF2Sn11 with elastic
moduli C. To formulate this problem, the multi-inhomogenei
system is replaced with the equivalent multi-inclusion~EMI!
with proper choice of homogenizing eigenstrainsekl*

( i ) , i
6 Õ Vol. 68, JANUARY 2001
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51,2,3, . . . ,n11. Next, the superposition described in the pre
ous section is employed to the resulting EMI. Thus, referring
the x-coordinate

Ci jpq
k ~epq

0 1epq
d~k!~x!!5Ci jpq~epq

0 1epq
d~k!~x!2epq* ~k!~x!!,

xPCk , k51,2, . . . ,n11, (14a)

e i j
d~k!~x!5(

l 51

n11

e i j
S l~x;e* ~ l !~x!!2(

l 51

n

e i j
S l~x;e* ~ l 11!(x!),

xPCk , k51,2, . . . ,n11. (14b)

Suppose that the eigenstrains and the disturbance strains armth
order polynomials of coordinates, each polynomial havingm8
terms. Following similar arguments as for the EDI case discus
in Section 2, the consistency Eqs.~14a! yield 6m8(n11) equa-
tions with 12m8(n11) unknowns. Moreover, depending o
whether pointx is an interior point of subdomainS i or not, each
quantity eS i(x;e* ( i )) can be expressed by an inhomogeneo
polynomial or Taylors’ series expansion of degreem, respectively.
This leads to an additional set of 6m8(n11) equations, which
then completes the system of equations for the determinatio
12m8(n11) unknowns. Using the theory presented herein,
stress~strain! can be calculated pointwise with high accura
within the inhomogeneities. In Appendix B, it is shown that b
employing an averaging scheme to the present theory, the ave
consistency conditions obtained by Hori and Nemat-Nasser@13#
for the evaluation of average strains and stresses are recove

4 Results and Discussion
In this section the numerical solutions for the stress field

three different double-inhomogeneity problems will be given. F
the sake of comparison and in order to demonstrate the accu
of the present theory, two problems considered by other inve

Fig. 4 A multi-inhomogeneity system consisting of n -layers of
coatings
Transactions of the ASME
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gators are reexamined. In Subsection 4.1, the coated short
composites studied by Mikata and Taya@8# and in Subsection 4.2
the coated continuous fiber studied by Mikata and Taya@18#, and
by Benveniste et al.@12# is reconsidered. In Subsection 4.3
double-inhomogeneity system is considered, consisting o
spherical inhomogeneity with a spherical cavity and centers
do not coincide. Hence, this system does not possess any o
symmetries of the problems of Subsections 4.1 and 4.2. Furt
more, the interphase layer has variable thickness due to the e
ing eccentricity.

4.1 Coated Short Fiber Composites Under Mechanical
Loading. As mentioned earlier, Mikata and Taya@8# used the
Boussinesq-Sadowsky stress function to calculate the stress
around a coated short fiber under axisymmetric loading. T
problem is schematically shown in Fig. 5. It is solved und
uniaxial far-field stresssz

0, fiber aspect ratiob/a520, coating to
matrix stiffness ratioG2 /G152, fiber-to-matrix stiffness ratio
G3 /G1510, and Poisson’s ration15n25n350.3. For coating
thickness to fiber radius ratio ofc/a50.1, they found the normal
ized stresssz /sz

0 along the radial direction on the planez50 in
fiber, coating and matrix to be 8.8, 1.8, and 0.9 respectively. T
results together with the ones obtained by the present theory
shown in Fig. 6. According to the present theorysz /sz

0

59.25,1.85 in fiber and coating, respectively. Inside the mat
just outside the coating,sz /sz

050.93 which gradually approache
sz /sz

051 away from the coating. In this particular example, sin
the coating is thin, the stress fields in the fiber and coating
nearly constant and hence the zeroth-order term in the expan
of eigenstrains given by Eqs.~5! of the present analysis suffice
Mikata and Taya~@8#! pointed out that for a coated short fibe
with a fiber aspect ratio ofb/a520, the value of the stresssz
inside of each region~fiber, coating, and matrix! is roughly pro-
portional to their corresponding shear modulusG. This propor-
tionality becomes exact for a coated long cylindrical fiber. S
cifically, in this example, when instead of a coated short fibe
coated long cylindrical fiber (b/a→`) is considered,sz /sz

0 must
equal 10, 2, 1 in the fiber, coating, and matrix, respectively. A
plications of the present theory and the method used by Mik
and Taya to the coated short fiber problem considered in
section, show that the values ofsz /sz

0 for the coated short fibe
are nearly equal to the solution of the corresponding coated
fiber problem~i.e., nearly equal to 10, 2, 1 in the fiber, coatin
and matrix, respectively!. In the context of the present theory, th
result is further supported by the fact that, the Eshelby’s tens
for a cylinder and for an ellipsoid with aspect ratio ofb/a520 are

Fig. 5 A coated short fiber model considered by Mikata and
Taya †8‡
Journal of Applied Mechanics
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approximately equal. It should be emphasized that the met
used by Mikata and Taya is valid for axisymmetric loading on
however, such a limitation is not imposed on the present the
which is applicable for more general loading conditions.

4.2 Coated Continuous Fiber Composites Under Mechani-
cal Loading. Mikata and Taya@18# and later Benveniste et al
@9# considered coated continuous fiber composites under ther
mechanical loadings. Mikata and Taya@18# used a four-concentric
circular cylindrical model for the stress analysis of coated fib
composites subjected to thermomechanical loadings. Benve
et al. @9# based on an earlier work of Benveniste@12# calculated
approximate stress fields for coated fiber composites. The m
of coated continuous fiber composites under transverse no
loading which have been considered by Benveniste et al.@9# is
shown in Fig. 7. In this subsection, this problem is re-examin
using the method of EDI developed in the present work and
corresponding results are shown in Figs. 8 and 9. The mate
properties used for this example are given in Table 1. The num
cal values of stress components at points A and B inside
coating which have been indicated in Fig. 7, are given in Table
The results obtained in the present work agrees very well w
those of Benveniste et al.@9#. For this problem as in the previou
example of Subsection 4.1, the coating is very thin and con
quently the stress fields inside the fiber and coating are ne
uniform. Again, the zeroth-order term in the present analy
yields a reasonable results.

Fig. 6 Variation of sz along r in the plane of zÄ0 obtained by
the method of the EIM presented herein for the problem shown
in Fig. 5

Fig. 7 A continuous coated fiber model under transverse load-
ing considered by Benveniste et al. †9‡
JANUARY 2001, Vol. 68 Õ 7
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4.3 Double-Inhomogeneity System Consisting of Two Ec
centric Spheres. Consider the double-inhomogeneity syste
under far-field uniaxial stresssx

0, as shown in Fig. 10. This sys
tem consists of a spherical cavityV embedded in another sphe
S, which in turn is surrounded by an infinite matrixF2S. The
centers of spheresV and S whose radii arer 151 and r 254,

Fig. 8 Stress distributions along the x -axis obtained by the
method of the EIM presented herein for the problem shown in
Fig. 7

Fig. 9 Stress distributions along the y -axis obtained by the
method of the EIM presented herein for the problem shown in
Fig. 7

Table 1 Material properties of a coated fiber composite sys-
tem, shown in Fig. 7

Material
Elastic Modulus

E(Gpa)
Shear Modulus

G(Gpa)
Volume
Fraction

Sic Fiber 431 172 0.4
Carbon Coating 34.48 14.34 0.0107
Titanium-Al Matrix 96.5 37.1 0.5893

Table 2 Some stress components obtained for the system
shown in Fig. 7 by the present theory

Point suu ~MPa! s rr ~MPa! s ru ~MPa!

A 0.08 20.09 0
B 0.27 1.21 0
8 Õ Vol. 68, JANUARY 2001
m
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respectively, are located on thex-axis and are set apart by th
distanceD52. Poisson’s ratio for the matrix and coating aren1
5n250.3, and coating to matrix stiffness ratioG2 /G1510. The
plots of stress distributions,sx /sx

0 andsy /sx
05sz /sx

0 along the
x-axis are depicted in Fig. 11. This example demonstrates
nonuniformity and variation of stress~strain! fields within the
coating, and it is observed that, as moving away from poin
toward point A along thex-axis, only then the stresses becom
uniform. This is expected since the effect of cavity and its int
action with the coating becomes negligible, as if the cavity do
not exist and consequently the stresses become uniform, in ag
ment with the Eshelby’s single-ellipsoidal inclusion results.
should be noted that the values ofsy and sz become negligible
outside the sphereS. The values of stress components at t
points A, B, C, and D insideS, for which the zeroth and first-
degree terms of the expansions have been employed, are disp
in Table 3. The results obtained considering zeroth and first-o
terms of the expansion are nearly the same as the results obt
using zeroth-order term only.

5 Conclusions
In this paper, Eshelby’s equivalent inclusion method in co

junction with a superposition scheme described in Section 2 w
employed to compute the stress fields in composites with co
inhomogeneities. In general, the elastic fields inside the inho
geneities and the coatings are not uniform, and hence were
panded in terms of the Cartesian coordinates. As discussed in

Fig. 10 A double-inhomogeneity system consisting of a cavity
V surrounded by a spherical inhomogeneity S which in turn is
surrounded by an infinite domain, under far-field stress sx

0

Fig. 11 Stress distributions along the x -axis for the problem
depicted in Fig. 10
Transactions of the ASME
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paper, the problems of confocal spheroids and concentric cy
ders with thin coatings are within the range of applicability of t
methods proposed in the literature. Re-examination of these p
lems using the present methodology shows that, even when
the zeroth-order term in the expansions is considered, the s
profiles obtained are in excellent agreement with the ones repo
in the literature using other approaches. Moreover, in the pre
paper a more general problem of a double-inhomogeneity sys
consisting of two eccentric spheres has been examined. For
problem, the zeroth-order term in the expansions of eigenstr
« i j*

(1)(x) and« i j*
(2)(x) yields nearly the same results as when t

first-order term of the expansions was also included.
It should be emphasized that the theory presented here

valid not only for thin, but also for thick coatings, as well as f
multilayers of variable thickness. Furthermore, the present the
can handle multi-inhomogeneity systems consisting of ellipso
inhomogeneities of arbitrary elastic constants, sizes, and orie
tions.
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Appendix A
Consider an ellipsoidal inclusion,a in an infinite isotropic elas-

tic medium, whose principal axes coincide with coordinate ax
x1 , x2 , andx3 . Suppose that the eigenstrain in the inclusion is
the form of polynomial of coordinates as given by the express
~11!. It follows that the disturbance in strain field can be presen
by expression~12!, for which the following relations involving
g i jkl . . . hold:

8p~12n!g i jkl 5H ,kli j 22ndklF ,i j 2~12n!

3@F ,k jd i l 1F ,kid j l 1F ,l j d ik1F ,l i d jk#,

8p~12n!g i jklq5Hq,kli j 22ndklFq,i j 2~12n!

3@Fq,k jd i l 1Fq,kid j l 1Fq,l j d ik1Fq,l i d jk#,

],

such that

H~x!5E
a
ux2x8udx8,

Hi j . . . k~x!5E
a
xi8xj8 . . . xk8ux2x8udx8,

F~x!5E
a

dx8

ux2x8u
,

Fi j . . . k~x!5E
a

xi8xj8 . . . xk8dx8

ux2x8u
,

where, in general,g i jkl . . . (x)Þgkli j . . . (x) unlessiÞ j and kÞ l .
If xPa then ~@2#!

Table 3 Principal stresses for points A, B, C, and D along the
x -axis, corresponding to Fig. 10

Point A Points B and C Point D

Terms in the
Expansion

sx

sx
0

sy

sx
0 5

sz

sx
0

sx

sx
0

sy

sx
0 5

sz

sx
0

sx

sx
0

sy

sx
0 5

sz

sx
0

Zeroth-order term 1.55 20.33 0.0 26.82 0.85 20.04
Zeroth and first-
order terms

1.55 20.33 0.0 26.78 0.90 0.1
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g i jkl ~x!5g i jkl ~0!, xPa. (A1)

Also, the higher order tensors,g i jkl . . . can be expanded into th
following polynomial forms~@4#!:

g i jklq~x!5g i jklq ,m~0!xm , xPa,

g i jklqr ~x!5g i jklqr ~0!1
1
2 g i jklqr ,mn~0!xmxn , xPa (A2)

], ].

On substituting~A1! and~A2! into the expression~12! an inhomo-
geneous polynomial ofx for e i j

a (x;e* ( i )),xPa will be obtained.
The constituent terms of this polynomial are of degreem,(m
22),(m24), . . . . But ifpointx0 is an exterior point with respec
to the inclusiona, then Taylors’ series expansions ofg i jkl . . . (x)
about the pointx5x0 are used,

g i jkl ~x!5g i jkl ~x0!1g i jkl ,m~x0!xm1
1
2 g i jkl ,mn~x0!xmxn

1 . . . , x0¹a,

g i jklq~x!5g i jklq~x0!1g i jklq ,m~x0!xm1
1
2 g i jklq ,mn~x0!xmxn

1 . . . , x0¹a, (A3)

], ].

Substitution of~A3! into the expression~12! yields a polynomial
for e i j

a (x;e* ( i )).

Appendix B
In this Appendix it is shown that by employing the expressio

~9!, which resulted from the superposition presented in Sectio
the average consistency conditions derived by Hori and Nem
Nasser@13# are recovered. Denote the volume average of a fi
quantity ~.! over v by ^(.)&v , and apply volume averages to th
consistency conditions~8! over V andC, respectively, we obtain

Ci jkl
1 ~ekl

0 1^ekl
d~1!&V!5Ci jkl ~ekl

0 1^ekl
d~1!&V2^ekl*

~1!&V!, (B1)

Ci jkl
2 ~ekl

0 1^ekl
d~2!&C!5Ci jkl ~ekl

0 1^ekl
d~2!&C2^ekl*

~2!&C!, (B2)

Taking the volume average of expression~9a! over V

^e i j
d~1!~x!&V5^e i j

S~x;e* ~2!!&V1^e i j
V~x;e* ~1!!&V

2^e i j
V~x;e* ~2!!&V , (B3)

where without loss of generality the bars have been dropped.
ing Tanaka-Mori result~@15#! we have

^e i j
V~x;e* ~1!!&V5Si jkl ~V!^ekl*

~1!&V , (B4)

whereSi jkl (V) is given by Eq.~2a!. The first term in~B3! is given
by

^e i j
S~x;e* ~2!!&V5

1

V E
V
E

S
G i jmn~x2x8!emn* ~2!~x8!dx8dx.

(B5)

If we let

E
C

G i jmn~x2x8!~emn* ~2!~x8!2^emn* &C!dx8[0, (B6)

as assumed by Hori and Nemat-Nasser@13# which can indeed be
justified when the coating is thin enough, then~B5! becomes

^e i j
S~x;e* ~2!!&V5Si jmn~V!^emn* ~2!&V

1~Si jmn~S!2Si jmn~V!!^emn* ~2!&C . (B7)

The last term in~B3! becomes

^e i j
V~x;e* ~2!!&V5Si jmn~V!^emn* ~2!&V . (B8)

Substitution of~B4!, ~B7!, and~B8! into ~B3! yields
JANUARY 2001, Vol. 68 Õ 9
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^e i j
d~1!&V5Si jkl ~V!^ekl*

~1!&V1~Si jkl ~S!2Si jkl ~V!!^ekl*
~2!&C .

(B9)

We have that

~ed~x!,e* ~x!!5H ~ed~1!~x!,e* ~1!~x!!, xPV,

~ed~2!~x!,e* ~2!~x!!, xPC.

Define the volume fraction ofV as f 5V/S, then

^e i j
d &S5Si jkl ~S!^ekl* &S5 f ^e i j

d~1!&V1~12 f !^e i j
d~2!&C ,

(B10)

^e i j* &S5 f ^e i j*
~1!&V1~12 f !^e i j*

~2!&C . (B11)

Combination of~B7!, ~B10!, and~B11! leads to

^e i j
d~2!&C5Si jkl ~S!^ekl*

~2!&C1
f

12 f
~Si jkl ~S!2Si jkl ~V!!

3~^ekl*
~1!&V2^ekl*

~2!&C!. (B12)

Upon substitution of~B9! and~B12! into ~B1! and~B2! we obtain

~Ci jkl
1 2Ci jkl !$ekl

0 1Sklmn~V!^emn* ~1!&V1~Sklmn~S!2Sklmn~V!!

3^emn* ~2!&C%1Ci jkl ^ekl*
~1!&V50, (B13)

~Ci jkl
2 2Ci jkl !H ekl

0 1Sklmn~S!^emn* ~2!&C1
f

12 f
~Sklmn~S!

2Sklmn~V!!~^emn* ~1!&V2^emn* ~2!&C!J 1Ci jkl ^ekl*
~2!&C50,

(B14)

which are the average consistency conditions obtained by H
and Nemat-Nasser@13#.
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1 Introduction
The prediction of stress and strain is essential for both mech

cal and electrical design of high-field solenoid magnets. Th
magnets are designed in a variety of configurations. A superc
ducting magnet is one example of such magnets, which can
treated as a combination of several solenoid coils, where each
may be reinforced by a nonconducting layer. Depending upon
geometrical specifications of a coil, magnetic fields may beh
differently. These fields result in magnetic body forces, and t
stresses. Traditionally only the tangential component of the st
at the plane perpendicular to the middle section of the longitud
axis of a coil~midplane! has been considered for design and fa
ure analysis. The value of shear stress has been determined
small in the midplane but it becomes larger toward the ends of
coil. In the analytical solutions available in the literature, t
stress analysis has been performed for just the midplane and
stress is assumed to be negligible~@1–4#!. As a result, a three-
dimensional closed-form solution is desired to understand the
tribution of stresses~including shear! throughout a solenoid coil
In the present work, a general closed-form solution, using
Green’s function method, is derived for an elastic, isotropic coi
a high-field solenoid magnet. This solution is applied to the i
portant case of a superconducting magnet. This analysis is
limited to the midplane and can be used for any type of solen
magnet.

The use of a Green’s function solution is not limited to ma
netic body forces. It can be applied to other axisymmetric elas
ity problems for finite bodies. The Green’s function solution c
be used for inclusion problem in composite materials wh
eigenstrains may be considered as body forces~@5,6#!. The
Green’s function solution can also be applied to specific proble
in fracture mechanics and composite materials~@7–9#!. Fictitious
body forces can be introduced in composite materials, where
difference between the thermal expansion coefficients of the fi
and the matrix results in residual stresses.

A limited number of publications on the approximation of th
three-dimensional problem are available in the literature. So
solutions are obtained by neglecting shear throughout the
~@10#!. Other solutions are based upon numerical techniques~@11#!

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
tober 1, 1999; final revision, May 8, 2000. Associate Editor: M.-J. Pindera. Dis
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or power series expansion of the fields and displacements~@12#!.
The direct analytical solutions for infinite or semi-infinite domai
are not appropriate for a finite domain such as a magnet~@13,14#!.

2 Fundamental Equations for the Stress Functions
Consider an elastic isotropic coil with inside radius ofa, out-

side radius ofb, and length of 2L as shown in Fig. 1. Using the
equilibrium equations, constitutive equations, and stra
displacement relationships, the governing equations for displa
ment vectoru(r ,z), for an axisymmetric distribution of body
forcesX(r ,z), may be written as

~l1m!¹~¹.u!1m¹2u1X50 (1)

where ¹2 is the three-dimensional Laplacian andl and m are
~Lamé’s! elastic coefficients~@15#!.

From the Helmholtz theorem, any vector satisfying Eq.~1! may
be resolved into a sum of a gradient and a curl

u5¹f1¹3A (2)

wheref(r ,z) is a scalar potential andA(r ,z) is a vector potential
such that¹.A50. Incorporating the displacement vector from E
~2! into Eq. ~1! yields an equation in terms of potential function
f andA.

~l12m!¹~¹2f!1m¹3~¹2A!1X50. (3)

The independent potential functionsf andA may be written as

A5a¹3C f5b¹.C (4)

where a and b are arbitrary constants, and components of
vectorC are the stress functions. Introducing Eq.~4! into Eq. ~3!
leads to a partial differential equation for vectorC.

b~l12m!¹4C1@b~l12m!1ma#¹3@¹3~¹2C!#1X50
(5)

In order to simplify Eq.~5!, we may choose the arbitrary constan
a and b as 21/m and 1/(l12m), respectively. Thus, Eq.~5!
reduces to the component form.

S ¹22
1

r 2D 2

C r2
4

r 4

]2C r

]u2 2
4

r 2 S ¹22
1

r 2D ]Cu

]u
1Xr50

S ¹22
1

r 2D 2

Cu2
4

r 4

]2Cu

]u2 1
4

r 2 S ¹22
1

r 2D ]C r

]u
1Xu50

¹4Cz1Xz50 (6)

Because the geometry and loading are axisymmetric, the pa
derivative with respect to tangential direction is zero,]/]u50.

-
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Hence, the three partial differential equations in Eq.~6! reduce to
three uncoupled partial differential equations for radial, tangen
and axial stress functions:

S ¹22
1

r 2D 2

C r1Xr50 (7)

S ¹22
1

r 2D 2

Cu1Xu50 (8)

¹4Cz1Xz50. (9)

The body force in a magnet is the Lorentz force, a function
r andz related to the magnetic field,B, and current density,J, by

X5J3B. (10)

For an axisymmetric distribution of Lorentz force,J5Jueu and
B5Brer1Bzez . Thus, the vector product of theJ andB leads to

Xr5JuBz Xu50 Xz52JuBr . (11)

In the absence of a tangential magnetic body force in Eq.~8!, the
tangential stress function will be zero, resulting in a zero tang
tial displacementuu .

3 Finite Hankel Transform
The partial differential equations represented by Eqs.~7! and

~9! may be solved by using finite Hankel transforms~@16#!. The
finite Hankel transform of ordern of function f (r ) on a closed
finite interval @a, b# is defined by

Rn@ f ~r !#5 f̄ ~z i !5E
a

b

r f ~r !Kn~z i ,r !dr (12)

wherez i is a root of the transcendental equation

Jn~z ia!Yn~z ib!2Jn~z ib!Yn~z ia!50 (13)

andKn(z i ,r ) is the Fourier Bessel kernel.

Kn~z i ,r !5@Jn~z i r !Yn~z ib!2Jn~z ib!Yn~z i r !# (14)

The inverse transform for the finite Hankel transform is

f ~r !5Rn
21@ f̄ ~z i !#5

p2

2 (
i

z i
2Jn

2~z ia!

Jn
2~z ia!2Jn

2~z ib!
f̄ ~z i !Kn~z i ,r !.

(15)

where the summation is extended over all positive rootsz i . The
finite Hankel transform of a Laplacian off (r ) ~in cylindrical co-
ordinate! is given by

Fig. 1 Schematic diagram representing one coil of a magnet
12 Õ Vol. 68, JANUARY 2001
ial,

of

en-

RnF S ¹22
n2

r 2 D f G5RnF S d2

dr2 1
1

r

d

dr
2

n2

r 2 D f G
5

2

p S f ~b!2
Jn~z ib!

Jn~z ia!
f ~a! D2z i

2Rn@ f #.

(16)

4 Radial Green’s Function
The Radial Green’s function forC r , radial stress function, is

obtained by solving Eq.~7! with Dirichlet homogeneous boundar
conditions. Applying the finite Hankel transform~of order one! to
each term of Eq.~7! yields

R1F S ¹22
1

r 2D 2

C r G52R1@Xr #. (17)

Use of Eq.~16! in Eq. ~17! results in

S 2z1i
2 1

d2

dz2D 2

C̄ r~z1i ,z!52X̄r~z1i ,z! (18)

wherez1i is a root of the transcendental equation

J1~z1ia!Y1~z1ib!2J1~z1ib!Y1~z1ia!50 (19)

and

C̄ r~z1i ,z!5E
a

b

rC r~r ,z!K1~z1i ,r !dr (20)

X̄r~z1i ,z!5E
a

b

rXr~r ,z!K1~z1i ,r !dr, (21)

where

K1~z1i ,r !5@J1~z1i r !Y1~z1ib!2J1~z1ib!Y1~z1i r !# (22)

is the Fourier Bessel kernel. An additional transform~in the axial
direction! is needed for solving Eq.~18!. Considering the radial
body force is an even function ofz and the interval is finite
@2L,L#, an appropriate transform is the finite Fourier cosi
transform. By introducing the finite Fourier cosine transform~in
the axial direction! of Eq. ~17!,

JCF S 2z1i
2 1

]2

]z2D 2

C̄ r~z1i ,z!G52JC@X̄r~z1i ,z!#,

the differential equation is converted into the algebraic equati

S 2z1i
2 2

n2p2

L2 D 2

C% r~z1i ,n!52X% r~z1i ,n! (23)

wheren is an integer. The functions

C% r~z1i ,n!5E
2L

L

C̄ r~z1i ,z!cos
npz

L
dz (24)

X% r~z1i ,n!5E
2L

L

X̄r~z1i ,z!cos
npz

L
dz (25)

are the finite Fourier cosine transforms ofC̄ r(z1i ,z) and
X̄r(z1i ,z). The inverse finite Fourier cosine transform
C% r(z1i ,n) and inverse finite Hankel transform ofC̄ r(z1i ,z) are
defined by

C̄ r~z1i ,z!5JC
21@C% r~z1i ,n!#

5
1

2L
C% r~z1i ,0!1

1

L (
n51

`

C% r~z1i ,n!cos
npz

L
(26)
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C r~r ,z!5R1
21@C̄ r~z1i ,z!#

5
p2

2 (
i 51

`
z1i

2 J1
2~z1ia!

J1
2~z1ia!2J1

2~z1ib!
C̄ r~z1i ,z!K1~z1i ,r !.

(27)

Substitution of Eqs.~26! and~27! into Eq.~23! yields an equation
for the radial stress function:
Journal of Applied Mechanics
C r~r ,z!52
p2

2 (
i 51

`
z1i

2 J1
2~z1ia!

J1
2~z1ia!2J1

2~z1ib! F 1

2Lz1i
4 X% r~z1i ,0!

1L3(
n51

`
1

~L2z1i
2 1n2p2!2 X% r~z1i ,n!cos

npz

L GK1~z1i ,r !.

(28)
Introducing Eqs.~21! and~25! into Eq. ~28! gives the solution of
the radial stress functionC r(r ,z) in terms of the radial body force
Xr(r ,z).
C r~r ,z!52
p2

2 (
i 51

` H 1

2Lz1i
4 E E

2La

L b

r 8Xr~r 8,z8!K1~z1i ,r 8!dr8dz8

1L3(
n51

` F 1

~L2z1i
2 1n2p2!2 cos

npz

L E E
2La

L b

r 8Xr~r 8,z8!K1~z1i ,r 8!cos
npz8

L
dr8dz8G z1i

2 J1
2~z1ia!

J1
2~z1ia!2J1

2~z1ib!
K1~z1i ,r !J

(29)
ce.

The
By interchanging integrals with summations, we may write E
~29! in the form

C r~r ,z!5E
2L

L E
a

b

Xr~r 8,z8!Gr~r ,r 8,z,z8!dr8dz8 (30)

where

Gr~r ,r 8,z,z8!52(
i 51

` H p2

2

z1i
2 J1

2~z1ia!

J1
2~z1ia!2J1

2~z1ib!
r 8

3K1~z1i ,r !K1~z1i ,r 8!

3F 1

2Lz1i
4 1L3(

n51

`
1

~L2z1i
2 1n2p2!2

3cos
npz8

L
cos

npz

L G J (31)

is the radial Green’s function.

5 Axial Green’s Function
The axial Green’s function is obtained by solving the part

differential equation for the axial stress function, Eq.~9!, with
Dirichlet homogeneous boundary conditions. Here, finite Han
transform in the radial direction and finite Fourier sine transfo
in the axial direction~since the axial body force is an odd functio
of z! are used.

Applying the finite Hankel transform of order zero inr, and
finite Fourier since transform inz, to Eq. ~9! yields

S 2z0i
2 2

n2p2

L2 D 2

C% z~z0i ,n!52X% z~z0i ,n! (32)

wheren is an integer,z0i satisfies

J0~z0ia!Y0~z0ib!2J0~z0ib!Y0~z0ia!50 (33)
q.

ial

kel
rm
n

and

C% z~z0i ,n!5R0@Js@Cz~r ,z!##

5E E
2La

L b

rCz~r ,z!K0~z0i ,r !sin
npz

L
drdz (34)

X% z~z0i ,n!5R0@Js@Xz~r ,z!##

5E E
2La

L b

rXz~r ,z!K0~z0i ,r !sin
npz

L
drdz (35)

are transforms of the axial stress function and axial body for
Here,

K0~z0i ,r !5@J0~z0i r !Y0~z0ib!2J0~z0ib!Y0~z0i r !# (36)

is the Fourier Bessel kernel for the zero-order transformation.
inverse transform ofC% z(z0i ,n) is

Cz~r ,z!5R0
21@Js

21@C% z~z0i ,n!##

5
p2

2L (
i 51

`

(
n51

`
z0i

2 J0
2~z0ia!

J0
2~z0ia!2J0

2~z0ib!

3sin
npz

L
C% z~z0i ,n!K0~z0i ,r !. (37)

Incorporating Eqs.~32! and~35! into Eq.~37! gives the solution to
the axial stress functionCz(r ,z) in terms of the axial body force
Xz(r ,z).

Cz~r ,z!5E
2L

L E
a

b

Xz~r 8,z8!Gz~r ,r 8,z,z8!dr8dz8 (38)

where
Gz~r ,r 8,z,z8!52
p2

2 (
i 51

`

(
n51

` F L3

~L2z0i
2 1n2p2!2

z0i
2 J0

2~z0ia!

J0
2~z0ia!2J0

2~z0ib!
r 8K0~z0i ,r 8!K0~z0i ,r !sin

npz8

L
sin

npz

L G (39)

is the axial Green’s function.
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6 Boundary Conditions
The displacement vector is related to the vectorC by Eq.~40!.

u52
1

m
¹3~¹3C!1

1

l12m
¹~¹.C! (40)

The stress tensor in terms of the displacement vector is define

s5l~¹.u!I1m@¹u1¹Tu# (41)

whereI is the identity tensor. Substituting Eq.~40! into Eq. ~41!
results in stresses in terms of axial and radial stress function

s r52
]

]r S ¹22
1

r 2DC r1
1

12n S n¹22
]2

]r 2Dw

su5
2

r S ¹22
1

r 2DC r1
1

12n S n¹22
1

r

]

]r Dw

sz52
]

]z
~¹2Cz!1

1

12n S n¹22
]2

]z2Dw

s rz5
]

]r
~¹2Cz!1

]

]z S ¹22
1

r 2DC r2
1

12n

]2w

]r ]z
(42)

wheren is the Poisson’s ratio and

w5
1

r

]

]r
~rC r !1

]Cz

]z
(43)

is the divergence of the vectorC.
Traction-free boundary conditions are appropriate for a so

noid coil. Therefore, the radial and shear stresses should be ze
the inside and outside radii~r 5a and r 5b!, and the axial and
shear stresses should be zero at the ends of the coil (z56L).

Substituting the solutions for radial and axial stress functio
from Eqs.~30!, ~31!, ~38!, and~39! into Eq. ~42! and computing
radial and shear stresses at the inside and outside radii, an
axial and shear stresses at the ends of the coil, yields

s r~a,z!5(
n50

`

`1~n!cos
npz

L
(44)

s rz~a,z!5(
n51

`

`2~n!sin
npz

L

s r~b,z!5(
n50

`

`3~n!cos
npz

L

s rz~b,z!5(
n51

`

`4~n!sin
npz

L

sz~r ,6L !5(
i 51

`

@`5~z0i !K0~z0i ,r !1`6~z1i !K0* ~z1i ,r !#

s rz~r ,6L !50

where

K0* ~z1i ,r !5@J0~z1i r !Y1~z1ib!2J1~z1ib!Y0~z1i r !#

5
1

r z1i
K1~z1i ,r !1

1

z1i

]

]r
K1~z1i ,r !, (45)

and`1(n) through`4(n), `5(z0i) and`6(z1i) are given by

`1~n!5(
i 51

`
2

pa2

1

12n H 2Gz~z0i ,n!
np

L

J0~z0ib!

J0~z0ia!
1aG r~z1i ,n!

3Fn2p2

L2 ~22n!1z1i
2 ~12n!G J1~z0ib!

J1~z0ia! J (46)
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1

12n H 2Gz~z0i ,n!Fn
n2p2

L2

2z0i
2 ~12n!G J0~z0ib!

J0~z0ia! J
`3~n!5(

i 51

`
2

pb2

1

12n H 2Gz~z0i ,n!
np

L

1bG r~z1i ,n!Fn2p2

L2 ~22n!1z1i
2 ~12n!G J

`4~n!5(
i 51

`
1

12n

2

pb H 2Gz~z0i ,n!Fn
n2p2

L2 2z0i
2 ~12n!G J

`5~z0i !5(
n50

`
~21!n

12n H 2Gz~z0i ,n!
np

L Fn2p2

L2 ~12n!

1z0i
2 ~22n!G J

`6~z1i !5(
n50

`
~21!n

12n H G r~z1i ,n!z1iFn2p2

L2 ~12n!2nz1i
2 G J

with

Gz~z0i ,n!52
p2

2 H L3

~L2z0i
2 1n2p2!2

z0i
2 J0

2~z0ia!

J0
2~z0ia!2J0

2~z0ib!

3E
2L

L E
a

b

r 8Xz~r 8,z8!K0~z0i ,r 8!sin
npz8

L
dr8dz8J

(47)

G r~z1i ,n!52H p2

2

z1i
2 J1

2~z1ia!

J1
2~z1ia!2J1

2~z1ib!

L3

~L2z1i
2 1n2p2!2

3E
2L

L E
a

b

r 8Xr~r 8,z8!K1~z1i ,r 8!cos
npz8

L
dr8dz8J

G r~z1i ,0!52
p2

2

J1
2~z1ia!

J1
2~z1ia!2J1

2~z1ib!

1

2Lz1i
2

3E
2L

L E
a

b

r 8Xr~r 8,z8!K1~z1i ,r 8!dr8dz8.

From Eq. ~44!, it can be observed that except for the she
stress at the ends of the coil, boundary conditions are not satis
The radial and shear stresses impose forcing functions ofz at the
radial boundaries and the axial stress asserts a forcing functio
r at the axial boundaries. Thus, a complementary solution
either radial or axial stress function~since stresses are related
both! is needed to neutralize these forcing functions.

7 Complementary Solution for the Axial Stress Func-
tion

Let us consider functionj(r ,z) ~an odd function inz! as a
complementary function for the axial stress function. From E
~9!, j(r ,z) must satisfy the homogeneous part of the partial d
ferential equation for the axial stress function.

¹4z~r ,z!50 (48)

From Eq. ~42! radial, axial, and shear stresses are expresse
terms ofj(r ,z).

s r5
1

12n

]

]z S n¹22
]2

]r 2D j~r ,z! (49)
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s rz5
1

12n

]

]r F ~12n!¹22
]2

]z2Gj~r ,z!

The complementary function must reverse the effect of the
posed forcing functions by stresses at the boundaries. As a re
from Eqs.~44! and ~49! boundary conditions forj(r ,z) are ob-
tained and given by

1

12n

]

]z S n¹22
]2

]r 2D j~r ,z!U
r 5a

52(
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`

`1~n!cos
npz
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(50)
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]r F ~12n!¹22
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]z2Gj~r ,z!U
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52(
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npz

L
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12n
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]z S n¹22
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]r 2D j~r ,z!U
r 5b

52(
n50
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`3~n!cos
npz

L
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12n
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]r F ~12n!¹22
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]z2Gj~r ,z!U
r 5b

52(
n51
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`4~n!sin
npz

L

1

12n

]

]r F ~22n!¹22
]2

]z2Gj~r ,z!U
z5L

52(
i 51

`

@`5~z0i !K0~z0i ,r !1`6~z1i !K0* ~z1i ,r !#

1

12n

]

]r S ~12n!¹22
]2

]z2D j~r ,z!U
z5L

50.

The partial differential equation forj(r ,z) with the given bound-
ary conditions may be solved by using the superposition princi
The substitution ofj(r ,z)5j1(r ,z)1j2(r ,z) into Eq. ~48! yields
two partial differential equations forj1(r ,z) andj2(r ,z).

¹4j1~r ,z!50 (51)

¹4j2~r ,z!50 (52)

Solution toj1(r ,z) is achieved by applying the finite Hanke
transform of order zero to Eq.~51! and solving the resulting dif-
ferential equation forz.

j1~r ,z!5p2(
i 51

`
z0i

2 I 0
2~z0ia!

J0
2~z0ia!2J0

2~z0ib!
@Ai sinh~z0iz!

1Biz cosh~z0iz!#K0~z0i ,r ! (53)

Here, Ai and Bi are arbitrary constants. Solution toj2(r ,z) is
obtained by employing the finite Fourier sine transform to E
~52! and solving the ensuing differential equation forr.

j2~r ,z!5
1

2p (
n51

` F1

n
ÂnrI 1S np

L
r D1

1

n
B̂nrK 1S np

L
r D

1
2p

L
ĈnI 0S np

L
r D1

2p

L
D̂nK0S np

L
r D Gsin

npz

L

(54)

In Eq. ~54!, Ân , B̂n , Ĉn , and D̂n are arbitrary constants
I 0@(np/L)r # and I 1@(np/L)r # are the modified Bessel function
of the first kind, andK0@(np/L)r # and K1@(np/L)r # are the
modified Bessel functions of the second kind. The superposi
of Eqs.~53! and ~54! furnishes the solution toj(r ,z).
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j~r ,z!5p2(
i 51

`
z0i

2 J0
2~z0ia!

J0
2~z0ia!2J0

2~z0ib!
@Ai sinh~z0iz!

1Biz cosh~z0iz!#K0~z0i ,r !1
1

2p (
n51

` F1

n
ÂnrI 1S np

L
r D

1
1

n
B̂nrK 1S np

L
r D1

2p

L
ĈnI 0S np

L
r D

1
2p

L
D̂nK0S np

L
r D Gsin

npz

L
(55)

The six arbitrary constants in Eq.~55! may be evaluated by using
the six boundary conditions given by Eq.~50!. Applying the shear
stress boundary condition atz5L yields

Bi5v~z0i !Ai (56)

wherev(z0i) is expressed by Eq.~57!.

v~z0i !
5

2z0i

2n1z0iL coth~z0iL !
(57)

Employing the radial boundary conditions toj(r ,z) and using Eq.
~57! results in

|11~n!Ân1|12~n!B̂n1|13~n!Ĉn1|14~n!D̂n

1(
i 51

`

L1~z0i ,n!Ai5`1~n! (58)

|21~n!Ân1|22~n!B̂n1|23~n!Ĉn1|24~n!D̂n

1(
i 51

`

L2~z0i ,n!Ai5`2~n! (59)

|31~n!Ân1|32~n!B̂n1|33~n!Ĉn1|34~n!D̂n

1(
i 51

`

L3~z0i ,n!Ai5`3~n! (60)

|41~n!Ân1|42~n!B̂n1|43~n!Ĉn1|44~n!D̂n

1(
i 51

`

L4~z0i ,n!Ai5`4~n! (61)

where|11(n) through|44(n) andL1(z0i ,n) throughL4(z0i ,n)
are given in Appendix A. The boundary condition for axial stre
at z5L provides

L5~z0i !Ai1(
n51

`

@|51~z0i ,n!Ân1|52~z0i ,n!B̂n1|53~z0i ,n!Ĉn

1|54~z0i ,n!D̂n#5G5~z0i ,z1i ! (62)

where |51(z0i ,n) through |54(z0i ,n), L5(z0i) and G5(z0i ,z1i)
are given in Appendix B.

Equations~58!–~62! represent a system of equations where
unknowns areÂn , B̂n , Ĉn , D̂n and Ai . To evaluate these un
knowns, the infinite series in Eqs.~58!–~62! are replaced by finite
summations with an acceptable truncation error. Hence, the
nite upper limits fori andn are changed to finite values ofM and
N, respectively. Expanding these finite summations would re
in a system of equations with 4N1M unknowns and equations
where unknowns areÂ12ÂN , B̂12B̂N , Ĉ12ĈN , D̂12D̂N and
A12AM . Equation~62! givesM equations by lettingi vary from
1 to M. Moreover, allowingn to advance from 1 toN in Eqs.
~58!–~61!, results in 4N equations. By solving this system o
equations, the arbitrary constants for the complementary solu
of the axial stress function are obtained. The combination of
JANUARY 2001, Vol. 68 Õ 15



x

h

i

es
in-

d in
t of
n
c-
nd
by
on.
le-
sive

cal
ed
The
ic
complementary and the Green’s function solutions for the a
stress function yields a solution that satisfies both the bound
conditions and the axial body force. This solution together w
the radial Green’s function determines the distribution of stres
in a given coil.

8 Numerical Results
The Green’s function solution is applied to a 23 Tesla sup

conducting coil. The parameters for this coil are given in Table
Figures 2 and 3 show the tangential and radial stresses throug
coil along the radius at three different axial positions~z50, z
5L/2 andz5L!. Figure 4 shows the characteristics of the ax
stress through the coil along the radius at the midplane anz
5L/2; and Fig. 5 shows the shear stress atz5L/2. Note that due
to traction free boundary conditions, axial and shear stresses
zero atz5L and shear stress is zero at the midplane (z50) be-
cause of symmetry.

Fig. 2 Distribution of the tangential stress for a 23 Tesla su-
perconducting coil

Fig. 3 Distribution of the radial stress for a 23 Tesla supercon-
ducting coil

Table 1 Parameters for the 23 T superconducting coil

Name Symbol Value Unit

Inner radius a 100.00 mm
Outer radius b 136.50 mm
Half length L 28.00 mm
Elastic modulus E 111.00 GPa
Poisson’s ratio n 0.30
Current density J 530.10 A/mm2
16 Õ Vol. 68, JANUARY 2001
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9 Conclusions
Analytical closed-form solution for the distribution of stress

has been developed for a coil of high-field solenoid magnets,
cluding superconducting magnets. This solution is presente
forms of the Green’s functions, which permits the developmen
a solution irrespective of the type of the field or its distributio
within a coil. The problem was formulated in terms of stress fun
tions. Green’s functions were derived by using finite Hankel a
finite Fourier transforms. Boundary conditions were satisfied
introducing a complementary solution for the axial stress functi
The radial Green’s function with the superposition of the comp
mentary and the axial Green’s function provide a comprehen
analytical solution for the stresses.

The Green’s function solution provides a complete analyti
stress solution for an isotropic coil. This solution should be us
as a foundation for the stress analysis of multilayer magnets.
future work should also extend this solution for an orthotrop
coil.

Appendix A

|11~n!5
21

~12n! F S n2
1

2D np

L2 I 0S np

L
aD2

n2p2

2L3 aI1S np

L
aD G

|12~n!5
21

~12n! F S n2
1

2D np

L2 K0S np

L
aD2

n2p2

2L3 aK1S np

L
aD G

|13~n!5
21

~12n! F2
n3p3

L4 I 0S np

L
aD1

n2p2

L3

1

a
I 1S np

L
aD G

Fig. 4 Distribution of the axial stress for a 23 Tesla supercon-
ducting coil

Fig. 5 Distribution of the shear stress for a 23 Tesla supercon-
ducting coil
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Appendix B
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Static and Dynamic
Characterization of Some
Tensegrity Modules
A set of procedures was presented for characterizing static and dynamic respon
tensegrity modules. The procedures were applied to two tensegrity modules: a s
spherical module and a two-stage cylindrical module with three bars at each stage
singular value decomposition of the initial equilibrium matrix revealed prestress
infinitesimal mechanism modes. The prestress stiffening effect of infinitesimal mech
modes was found to be isotropic at each node. In the initial quasi-static loading, in
tesimal mechanisms exhibited soft response. As the deformation advanced, the stiff
tensegirty modules increased almost quadratically with infinitesimal mechanism a
tudes. Modal analyses revealed that the lowest modes were those of infinitesimal m
nism modes and their natural frequencies were an order of magnitude smaller than
of higher deformation modes.@DOI: 10.1115/1.1331058#
e

t

t

b

n

b

o
i

r of

ro-
be
s,’’
or

of

ons.
ini-

ue
ars.
ial

are
al

the
arge
and
n-
on-
om-
the

for
a-
by

what

for
grity
o

ax-

of
al
-

n
r
a
t

1 Introduction
Kenneth Snelson invented a cylindrical tensegrity tower

1948 ~@1#!. By extending the concept of geodesics, Fuller dev
oped spherical tensegrity modules~@2#!. According to Marks and
Fuller @2# and Pugh@3#, tensegrity is a class of truss structur
consisting of a continuous set of cables and discrete bars. Fig
1~a! and 1~b! illustrate, respectively, a six-bar spherical tensegr
module ~@4#! and a two-stage cylindrical tensegrity module wi
three bars at each stage~@5#!.

Aerospace engineers have adopted lightweight tensegrity s
tures as a new deployable structural concept. Motro@6#, Furuya
@7#, and Hanaor@8,9# proposed tensegrity structures as deploya
space structures. Skelton and Sultan@5# presented a smart struc
tural system integrating tensegrity structures with modern con
theory.

For a truss structure withnE elements or members andnN
nodes or joints withnC linearly independent displacement co
straints, there arenV[3 nN2nC unknown displacement compo
nents. In this paper it is assumed that each structure is constra
against rigid-body motion,nC>6. Let the element internal-force
vector be denoted bys, annE31 column matrix, and the externa
nodal force vector byf, annV31 column matrix. The equilibrium
equation at timet for quasi-static loadingf(t) is expressed as

A~ t !s~ t !5f~ t !, (1)

whereA(t) is annV3nE matrix consisting of direction cosines o
truss elements.~The equilibrium matrixA(t) will be defined in
~7a–c!.

Clark Maxwell@10# classified the stiffness of truss structures
using the difference between the element numbernE and the num-
ber of unknown displacement componentsnV :

Mx[nE2nV . (2)

which is referred to as the Maxwell number in this paper. Ma
well observed that ifMx.0, truss structures were redundant
statically indeterminate. IfMx50, trusses were statically determ
nate. If Mx,0, trusses became~kinematically indeterminate!

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
2, 1999; final revision, May 6, 2000. Associate Editor: R. C. Benson. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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mechanisms. As exceptions to the above forMx<0, Maxwell
noted structures which exhibited ‘‘inferior order of stiffness,’’i.e.,
stiffness is on the order of prestress instead of on the orde
Young’s modulus.

Calladine@11# observed that most of tensegrity structures int
duced by Mark and Fuller@2# possess mechanisms that could
stiffened by prestressing to achieve ‘‘infinitesimal mechanism
or Maxwell’s inferior order stiffness. By investigating the vect
spaces associated with the initial equilibrium matrixA(0) in ~1!,
Calladine@11# obtained the relationship between the number
prestress modesnS and the number of mechanismsnM as

nS2nM5Mx. (3)

Tensegrity structures exist under prestressed configurati
These prestressable configurations must be found by solving
tial equilibrium Eqs.~1! at t50 without external forces,f(0)
50. For a prestressable initial configuration, there is a uniq
prestress mode with tension in cables and compression in b
Initial element forces must also be computed by solving init
equilibrium problems.

Cable networks are another class of truss structures and
similar to tensegrity structures in their need for finding initi
geometry and prestress modes. Therefore, previous works on
mechanics of tensegrity structures have benefited from the l
deformation analysis of prestressed cable networks by Argyris
Scharpf@12#. Based upon their theory, a pre-stressed initial co
figuration of a cable network has been computed by using a n
linear finite element code based upon a guess of the initial ge
etry. In order to solve nonlinear equilibrium equations either
Newton method~@13#! or dynamic relaxation methods~@14,15#!
have been employed. However, these numerical procedures
finding initial configurations are not useful for control applic
tions. Analytical expressions can describe initial configurations
using an order of magnitude less number of parameters than
is used for numerical procedures.

The objective of the paper is to present a set of procedures
characterizing static and dynamic response of a class of tense
modules withMx<0. The procedures are illustrated by using tw
simple tensegrity modules shown in Figs. 1~a! and ~b!. The first
step in characterizing tensegrity modules is to compute the M
well number~2! and observe Calladine’s relation~3!. For a class
of tensegrity modules with ‘‘discrete’’ bars, the total number
nodesnN is two times the number of bars. Both the spheric
tensegrity module in Fig. 1~a! and the two-stage tensegrity mod
ule in Fig. 1~b! consist of six bars and 24 cables, i.e.,nN512 and
nE530. The Maxwell numberMx[nE2(3nN2nC) with nC56
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of the modules becomesMx50. Therefore, from Calladine’s re
lation ~3! they have the same number of prestress modes
mechanism modes,i.e., nS5nM .

2 Summary of Nonlinear Equations of Motion
In this section, nonlinear equations of motion for elastic tru

structures under large deformation are summarized~@16#!. A mo-
tion of a truss structure withnN nodes in Euclidean spaceR3 is
described by the nodal coordinatex(t) with respect to an inertia
Cartesian coordinate system$x1 ,x2 ,x3% and timet. By employing
a finite element kinematical representation, nodes of the struc
are identified by using both the global node numbers and loca~or
elemental! node numbers~@13,17#!. The global node numbers
1,2, . . . ,nN , identify the nodes of the entire truss structure, wh
local node numbers 1ˆ and 2̂ identify the end nodes of each trus
element, as illustrated in Figs. 1 and 2. Truss elements are i
tified by element numbers 1,2, . . . ,nE in parentheses.

In a finite element description, the variation of the velocity fie
v in the axialu1-direction in each element is linearly interpolate
by element nodal velocities, as illustrated in Fig. 2. Let the no
velocity be denoted byw, annV31 column matrix, and the noda
velocity of element~e! by w(e), a 631 column matrix. When a
truss structure is subjected to the nodal forcef(t) the principle of
virtual velocity yields~@18#!

Fig. 1 „a… A six-bar spherical tensegrity module; „b… a two-
stage tensegrity module with three bars at each stage

Fig. 2 Kinematics and kinetics of a deformed truss element
20 Õ Vol. 68, JANUARY 2001
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nE

dw~e!
•@M ~e!ẇ~e!1p~e!#1dw•f50. (4a)

In ~4a! dw denotes virtual nodal velocity,ẇ is the nodal accelera
tion, M (e) andp(e) denote, respectively, the element mass ma
and the element internal force vector due to the Cauchy a
normal-stresss11:

M ~e![
1

6
~mtl t!

~e!F2I3 I3

I3 2I3
G , (4b)

p~e![ H 2g
g J ~e!

~s11At!
~e!, (4c)

where mt , l t , and At are, respectively, the mass per unit ax
length, the element length, and the area of cross section at timt,
I3 denotes the 333 identity matrix, andg(e)(t) is the current
direction cosine of element~e!.

A relationship between the global and local~elemental! velocity
components for element~e! is established by a Boolean ma
Lg(e), an 63nV matrix, between the global nodal velocityw, an
nV31 column matrix, and the nodal velocityw(e) of element~e!:

w~e!5Lg~e!w, (5a)

dw~e!5Lg~e!dw. (5b)

By assembling~4a! for global degrees-of-freedom by using~5a,
5b!, the equations of motion for the current configuration are o
tained~see for example@17#!:

Mẇ1p~ t !2f~ t !50, (6a)

whereM andp are the global mass matrix and the global intern
force vector

M[(
e51

nE

Lg~e!T
M ~e!Lg~e!, (6b)

p[(
e51

nE

Lg~e!T
p~e!. (6c)

Let s(t) denote thenE31 column matrix of the element force
vector whoseeth element is the axial force (s11At)

(e). From ~4c!
and ~6c!, the internal force vectorp is expressed as

p~ t !5A~ t !s~ t !, (7a)

where

A[ ba1 a2¯anE
c, (7b)

ae[Lg~e!TH 2g
g J ~e!

. (7c)

For initial equilibrium analyses, Eqs.~6a! and ~7a! at a natural
configuration, denoted by timet50, are utilized:

A~0!s~0!5f~0!, (8)

in which the initial direction cosineg(e)(0) is used in~7c!. By
applying the singular value decomposition toA~0!, prestress and
infinitesimal mechanism modes are computed by Murakami@19#.

In order to investigate the stiffening effect by a prestress mo
natural frequencies, and corresponding mode shapes, the e
tions of motion~6a! are linearized at a prestressed configuratio
denoted also byt50. Let Young’s modulus, the area of cros
section, the element length, and the second Piola-Kirchhoff st
at the prestressed state be denoted, respectively, byY0 , A0 , l 0 ,
andS11(0)(5s11(0)). In terms of the nodal displacement vect
d and the nodal acceleration vectord̈, the linearized equations o
motion become

MLd̈1KTd5f~ t !, (9a)
Transactions of the ASME
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where the symmetric tangent stiffness matrixKT is decomposed
into the initial stiffnessK0 , employed for small deformation trus
analyses withG(e)[g(e)(0), and theprestress stiffnessK s as

KT5K01K s , (9b)

in which

K0[(
e51

nE

Lg~e!T
K0

~e!Lg~e!, (9c)

K s[(
e51

nE

Lg~e!T
K s

~e!Lg~e!, (9d)

K0
~e![S Y0A0

l 0
D ~e!F GGT 2GGT

2GGT GGT G ~e!

, (9e)

K s
~e![S S11~0!A0

l 0
D ~e!F I3 2I3

2I3 I3
G . (9f)

It is observed that the prestress stiffening in~9f! is ‘‘isotropic’’ at
each node.~In large deformation analyses of prestressed netwo
Argyris and Scharpf@12# predicted isotropic stiffening due to pre
stresses.! In the sequel, the above equations will be utilized
characterize static and dynamic response of tensegrity modu

3 Initial Shape Finding
The initial geometry of tensegrity modules was originally fou

by the ingenuity of pioneers, such as Snelson and Fuller. Elem
lengths and nodal coordinates were later justified analytically
considering initial equilibrium Eq.~8! with f(0)50. An obvious
condition for tensegrity modules is the existence of nontrivial p
stress modess~0! with tension in cables and compression in ba
This condition is referred to as the ‘‘tensegrity condition.’’ Tar
@20# analytically constructed equilibrium equations and obtain
the tensegrity conditions by using local coordinate systems
cyclic cylindrical truss structures. By extremizing the length o
single family of cable elements, for example vertical cables,
prescribing remaining geometrical parameters, Tobie@21# found
the twist angle for regular cylindrical tensegrity modules. Tobi
work was introduced by Kenner@4# in his book. The equivalence
between Tobie’s and Tarnai’s conditions was proven by M
rakami @19#.

At this moment, there are two methods available for findi
element lengths and nodal coordinates of existing regular ten
rity modules:~i! by extremizing the length of a single family o
cable elements for a prescribed set of geometrical parameters
~ii ! by analytically solving reduced equilibrium equations. In th
section, the former method is applied to a six-bar spherical ten
rity module in Fig. 1~a!. The latter method is applied to a two
stage cylindrical tensegrity module in Fig. 1~b!.

A Cartesian coordinate system$x, y, z% is selected with the
origin at the center of the sphere which circumscribes all
nodes 1–12. Due to the spherical symmetry, it suffices to de
mine the coordinates of nodes 1, 2, and 3, illustrated in Fig. 3.
nodal coordinates are completely determined in terms of the s
ration h between a pair of parallel bars with lengthb as:
1(b/2,h/2,0),2(2b/2,h/2,0),3(0,b/2,h/2). Let the length of cable
elements be denoted byl. For a prescribed bar lengthb, the cable
length of the element connecting nodes 1 and 3 becomes a f
tion of the parameterh:

l ~h!5
1

2
Ab21~b2h!21h2. (10)

Spherical tensegrity modules built with arbitraryh collapse indi-
cating that inA~0! all columns are linearly independent. Spheric
tensegrity modules can exist without external supports if the
umns ofA~0! become linearly dependent and Eq.~8! with f(0)
50 has a nontrivial prestress modes~0!.
Journal of Applied Mechanics
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By extremizing the cable length with respect toh, i.e., dl/dh
50, one findsh5b/2. Since the elements of the initial equilib
rium matrix A(0)5@ai j # are functions of l (h), dl/dh50 is
equivalent to satisfying

Q̂~h![det~AT~0!A~0!!50. (11a)

It can be easily shown thatAT(0)A(0) is positive semi-definite,
Q̂(h)>0. Further, the rank ofA~0! is nE , except for the cases
when the tensegrity condition is satisfied,i.e., nS51. Therefore,
Q̂(h) takes the minimum value,Q̂(h)50, if and only if dQ̂/dh
50:

dQ̂

dh
5S (

i , j 51

nE

Cof~ci j !
dci j

dl D dl

dh
50, (11b)

where Cof(ci j ) denotes the cofactor ofci j [akiak j with summa-
tion over k51, . . . ,nV . For the tensegrity module,r A

[rankA(0)5nE21 and nS5dim(nullAT(0)A(0))51, there is
at least one nonzero cofactor of@ci j #. Therefore,dQ̂/dh50 if
and only if dl(h)/dh50.

By usingh5b/2 and computing both nodal coordinates and t
direction cosines of the bar and cables connected to the node
can write equilibrium Eqs.~8! at node 3. The prestress modes~0!
relates element forces in the barsb and cablesc as follows:

sc52
1

A6
sb . (12)

A two-stage cylindrical tensegrity module with three bars
each stage is shown in Fig. 1~b!. Skelton and Sultan@5# obtained
the equations of motion and tensegrity conditions for modu
consisting of ‘‘rigid’’ bars and cables with negligible mass. The
demonstrated unprecedented possibilities offered by contro
smart tensegrity structures. The structure in Fig. 1~b! is built by
stacking two three-bar cylindrical modules~@4#!. Figure 4~a! illus-
trates the connections of bars and cables by using a devel
connectivity diagram of the two-stage tensegrity~@3,22#!. In the
figure, bold lines indicate bars and thin lines indicate top, ba
saddle, and vertical cables. Dashed lines represent diag
cables. In order to define nodal coordinates, a Cartesian coo
nate system$x, y, z% is selected with the origin at the center of th
base equilateral triangle defined by nodes 1, 2, and 3, also den
by 1–3. Thex, y-plane coincides with the plane of the base t
angle 1–3, and cable~1, 2! is parallel to thex-axis. Thez-axis
connects the centers of the base and top equilateral triangles
top view of a two-stage tensegrity is illustrated in Fig. 4~b! by
using equilateral triangles formed by nodes at equal elevatio
Let the radii of the circles circumscribing the base triangle 1
and the top triangle 10–12 ber 0 . The bars of the base modul
consisting of nodes 1–6 connect nodes~1, 4!, ~2, 5!, ~3, 6! and are
twisted in the counterclockwise direction by 2p/31a. The pa-

Fig. 3 Nodal coordinates of the six-bar spherical tensegrity
module
JANUARY 2001, Vol. 68 Õ 21
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rametera is referred to as the additional twist angle~@4#!. The top
module 7–12 is an upside-down version of the base module 1
The bars of the top module connecting nodes~7, 10!, ~8, 11!, ~9,
12! are twisted in the clockwise direction by 2p/31a. The top
module is stacked on the saddle cables of the base module in
a way that nodes 7, 8, and 9, respectively, rest in the middle
saddle cables~4, 5!, ~5, 6!, and~6, 4!. The diagonal cables connec
nodes~1, 9!, ~2, 7!, ~3, 8!, ~12, 6!, ~10, 4!, and~11, 5!.

All nodal coordinates can be analytically expressed for the p
scribed bar lengthb, the radiusr 0 of the top and base circles, th
radiusr m of the circumscribing circles of triangles 4–6 and 7–
the additional twist anglea, and the overlap ratiog between the
triangles 4–6 and 7–9 in elevation. If thez-coordinate of the
triangle 4–6 is denoted byh (b,a,r 0 ,r m), thez-coordinate of the
triangle 7–9 becomes (12g)h. ~The nodal coordinates and ele
ment lengths are presented in the Appendix.! The previous ex-
tremization method does not work here since there are two
known cable lengths. A remaining method is to construct
initial equilibrium matrix of ~8! by analytically calculating the
initial direction cosineG of each element. By virtue of the cycli
symmetry, it suffices to examine the equilibrium equations at t
representative nodes 1 and 9 by incorporating the constraint
the elements in the same family possess the same prestresse
the element forces due to prestresses of bars, top and base c
vertical cables, and diagonal cables be denoted bysb , s0 , sv , and
sd , respectively. Saddle cables are divided into two groups: gr
I consisting of cables~6, 9!, ~4, 7!, ~5, 8! and group II consisting
of ~9, 4!, ~7, 5! and ~8, 6!. Their element forces are denote
respectively bys1 and s2 . With the above simplifications, the
equilibrium matrix of~8! reduces to a 636 matrix. By setting the
determinant ofA~0! to zero, the following characteristic equatio
in terms ofr m /r 0 , a, andg is obtained:

r m

r 0
sinS p

6
2a D5

g~g11!

2~g22g11!
. (13)

A reduced set of initial equilibrium equations is presented in
Appendix. The above analytical result agrees with the numer
examples presented by Skelton and Sultan@5# and Sultan@23#. In
order to find a set of nodal coordinates, one has to prescribe
parameters out of$r m /r 0 ,a,g% and solve~13! for the remaining
parameter. For a prescribedg, Eq. ~13! describes a line in thex,
y-plane. Let the lengths of top and base, vertical, saddle,
diagonal cables be denoted byl 0 , l v , l s , and l d , respectively.
The cable lengths were computed and shown in the Appendi

Fig. 4 „a… A developed connection diagram of the two-stage
tensegrity module; „b… a top view of equilateral triangles of the
two-stage tensegrity module
22 Õ Vol. 68, JANUARY 2001
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After finding the initial configuration, a nontrivial prestres
modes~0! can be computed from the reduced equilibrium equ
tions as follows:

s0

l 0
52

sb

bD8 H 2
g

)
sinS p

6
2a D1

11g

2)

r m

r 0
J , (14a)

sv

l v
52

sb

bD8 H g sinS p

3
2a D1sinaJ , (14b)

s1

l s
5

s2

l s
52

sb

bD8

)~12g!

g
sinS p

6
2a D , (14c)

sd

l d
52

sb

bD8
) sinS p

6
2a D , (14d)

where

D8[sinS p

3
2a D1g sina. (14e)

The parameters that satisfy~13! yield an admissible prestres
mode with tension in cables and compression in bars.

A key step in obtaining a reduced set of equilibrium equatio
is to incorporate the cyclic symmetry conditions and to impose
constraint of the same element forces due to prestresses o
same family of elements.

In the initial shape finding, Eq.~11a! is imposed on the initial
geometry for the existence of a prestress mode. It is instructiv
examine the quadratic form associated withAT(0)A(0) in the
vector spaceRnE of element internal forcess~0!. By using~8!, the
quadratic formsTAT(0)A(0)s is identified to bef•f the square
length of the nodal force vector inRnV and is positive semi-
definite. The condition~11a! only assures the existence of a pr
stress mode. Therefore, after computing a prestress mode, on
to check the admissibility of the prestress mode with tension
cables and compression in bars.

4 Infinitesimal Mechanism and Prestress Modes
Once an initial geometry is found, infinitesimal mechanism a

prestress modes can be numerically obtained by performing
singular value decomposition on the ‘‘full’’ initial equilibrium
matrix A~0! in ~8! ~@19#!. The matrixA~0! defines a linear trans
formation from the vector spaceRnE of the element internal forces
s and elongationse to the vector spaceRnV of the nodal forcesf
and displacementsd.

For small deformations, Clapeyron’s theorem~for example,
Sokolnikoff @24#! states that the work done by surface traction a
body forces acting through the displacements from the nat
configuration to the deformed configuration is equal to twice
strain energy of the body if it obeys Hooke’s law. The theore
yields at the natural configuration, denoted byt50:

^f,d&nV
5^s,e&nE

. (15)

By substituting the linear transformation~8! into ~15!, one obtains
the adjoint transformation ofA(0) from RnV to RnE as ~see, for
example, Naylor and Sell@25#!:

^A~0!s,d&nV
[^s,AT~0!d&nE

. (16)

This definition of the element elongatione agrees, as it should
with that obtained from the small deformation finite eleme
analyses:

e5AT~0!d. (17)

By investigating the dimensions ofRnV and RnE, Calladine@11#
observed

nE5nS1r A , (18a)
Transactions of the ASME
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wherer A[rankA(0),nS[dim~nullA(0)), the number ofprestress
modes, andnM[dim~nullAT(0)), the number ofinfinitesimal
mechanism modes. From~2! and ~18a, 18b!, Calladine’s relation
~3! was obtained. A physical interpretation of the null and ran
spaces ofA(0) andAT(0) was presented by Pellegrino and Ca
ladine @26#. Prestress modes span the null space ofA(0), while
mechanism modes span the null space ofAT(0).

In order to obtain base vectors ofRnV and RnE, the singular
value decomposition theorem~for example, Noble and Danie
@27#! is utilized. It is known thatn3n symmetric matrices have
real eigenvalues and orthonormal sets ofn eigenvectors. There
fore, AT(0)A(0) andA(0)AT(0) have, respectively,nE and nV

eigenpairs. Further, det(AT(0)A(0))>0 and det(A(0)AT(0))>0
indicate that the eigenvalues are positive semi-definite. There
r A([rankA(0)) positive eigenvalues:s1

2>s2
2> . . . >s r A

2 .0
where positives’s are called the singular values ofA(0). The
ordered eigenpairs in the decreasing singular values satisfy

AT~0!A~0!si5s i
2si , i 51,2,̄ ,nE , (19a)

A~0!AT~0!dj5s j
2sj , j 51,2,̄ ,nV . (19b)

In RnE,S̃[@s1s2 . . . snE
# is an orthonormal basis, whileD̃

[@d1d2 . . . dnV
# is an orthonormal basis inRnV. By using the

nV3nV orthonormal matrixD̃ and thenE3nE orthonormal matrix
S̃, A(0) is decomposed into

A~0!5D̃S̃S̃, (20a)

whereS̃ is annV3nE matrix with singular values on the diago
nals of the firstr A rows:

S̃53
s1 0 ¯ 0 0

0 s2 ¯ 0 0

] ] � ] ]

0 0 0 s r A
0

0 0 0 0 0

] ] ] ] ]

0 0 ¯ 0 0

4 . (20b)

The eigenvectorssj corresponding to zero eigenvalues of~19a!
are prestress modes and span the null space ofA(0), while eig-
envectorsdj corresponding to zero eigenvalues of~19b! are infini-
tesimal mechanism modes and span the null space ofAT(0). The
eigenproblems of~19a, 19b! can easily be solved by using eithe
Jacobi’s method~@13#! or Lanczos’ method~@17#!. For static char-
acterization of tensegrity modules, only eigenvectors correspo
ing to zero singular values are required. SinceMx50 and nS
51 for the tensegrity modules in Figs. 1~a! and ~b!, Calladine’s
relation ~3! yields nM51. Therefore,snE

is a prestress mode an
dnV

becomes an infinitesimal mechanism mode. One can vali
the numerical values insnE

by comparing them with the analytica
prestress mode in~14a!–~14d!.

Figures 5~a! and ~b! illustrate the infinitesimal mechanism
modes of the spherical tensegrity module and the two-st
tensegrity module, respectively. In the figures, dashed lines s
the undeformed configurations. The spherical module in Fig. 5~a!
exhibits a spherically symmetric, radial deformation mode. T
two-stage module in Fig. 5~b! shows an axially deforming mod
with the equilateral triangles 4–6 and 7–9, shown in Fig. 4~b!,
rotating in the same direction. This implies that top bars and b
bars are rotating in opposite directions with respect to thez-axis.
~A snap shot of Fig. 5~b! indicate an axially compressed state.! In
the next section, it will be shown that these infinitesimal mec
Journal of Applied Mechanics
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nism modes with zero element elongation exhibit a two-orders
magnitude softer response than the deformation modes with
zero elongation in~17!.

5 Stiffness of Prestressed Tensegrity Modules
For a prestressed tensegrity module, static equilibrium eq

tions for small deformations are obtained from~9a! with d̈5f
50. The tangent stiffnessKT was decomposed into the initia
stiffnessK0 , employed for small deformation truss analyses, a
the stiffnessK s induced by prestresses, as shown in~9b!. For the
two tensegrity modules in Figs. 1~a! and~b!, it can be numerically
shown that det(KT).0. Sincee5AT(0)dnV

50 andK0dnV
50, the

stiffness of an infinitesimal mechanism mode,dnV
in D̃ of ~20a!, is

induced only byK s . Further, Eq.~9f! reveals that the prestres
stiffness at each node is ‘‘isotropic’’ since the nodal stiffness
expressed by identity matrices~@12,16#!. It is noted that the as-
sumption of ‘‘moderate rotation’’ is economical and popular
employed for truss structures. However, due to an inconsis
linearization, the assumption of moderate rotation incorrectly p
dicts ‘‘anisotropic’’ prestress stiffening instead of ‘‘isotropic
stiffening for tensegrity structures with infinitesimal mechanis
modes.

6 Modal Analyses
Dynamic characterization of tensegrity modules involves mo

analysis at a ‘‘prestressed configuration.’’ Consider a small h
monic motion of the formd5d̃ exp(ivt) in ~9a! where d̃ is the
amplitude andv is the angular frequency. The standard fin
element eigenproblem is obtained from~9a! with f50 as

KTd̃5v2Md̃ . (21)

The above eigenproblem can be solved by either using the L
zos method~@17#! or the subspace iteration method~@13#!.

For the numerical examples, steel bars and cables with You
modulusY05200 GPa and mass densityr57860 kg/m3 are con-
sidered. The diameters of bars and cables are, respecti
1022 m and 1023 m. The first three natural frequencies of
spherical tensegrity module withb52m are shown in Table 1 for
increasing prestresses. The natural frequencies of a two-s
tensegrity module with the geometryr 05r m5h51m and g
51/2 are shown in Table 2. The first natural frequencies are

Fig. 5 „a… An infinitesimal mechanism mode of the spherical
tensegrity module; „b… an infinitesimal mechanism mode of the
two-stage tensegrity module
JANUARY 2001, Vol. 68 Õ 23
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order of magnitude smaller than those of higher modes. In the
modules, the first modes are indistinguishable from the infinite
mal mechanism modes, illustrated in Figs. 5~a! and~b!. As shown
by ~9e! and~9f!, the stiffness of the first modes is on the order
prestress, while that of the higher order modes is on the orde
Young’s modulus.

7 Nonlinear Stiffening Effect and Critical Loads of
Bars

In this section, a quasi-static load-displacement relationshi
investigated by using the updated Lagrangian finite element c
which solves~6a!. Newton’s method was used with the linearize
equation at each load increment.~Equation~9a! was linearized at
t50.! Figure 6~a! illustrates the vertical load and load-point di
placement relation of the two-stage tensegrity module. The s
vertical load is applied in thez-direction at each top node. Th
solid lines are the predictions of the finite element code at vari
initial prestress amplitudes. The initial tangent stiffness near
origin of Fig. 6~a! increases linearly with increasing prestress,
predicted by~9f!. Further, the figure illustrates that the line
range is extremely small. If bars do not buckle, the loa
displacement relation exhibits hardening response. As the
increases, the asymptotic stiffness converges to that obtained
~9e! with the direction cosines computed for the current deform
configuration. For the loading shown in Fig. 6~a! the element
forces are plotted in Fig. 6~b! as a function of the load-poin
displacement. The cable tensile forces quadratically increase w
out slacking with the vertical load in both tension and compr
sion. In the figure, the absolute value of bar compressive forc
plotted. Skelton and Adhikari@28# first reported a hardening-typ
axial load-displacement relation for a two-stage tensegrity m
ule. In addition, they reported cable slacking for the bending
formation of a two-stage tensegrity.

For tensegrity modules with infinitesimal mechanisms,
load-displacement relation is characterized by a nonlinear h
spring. Due to the hardening response of tensegrity modules
necessary design consideration is to prevent both tensile failu
cables and buckling of bars. The buckling of bars is a bifurcat
type, and a post-buckling behavior is known to be ‘‘imperfecti
sensitive’’ ~@29,30#!. Therefore, a critical load of bars should b
determined by either conducting experiments or performing n
linear finite element analyses of column buckling by impos
axial compressive forces predicted by the updated-Lagran
truss finite element code. When the sum of the element fo

Table 1 Natural frequencies of the spherical tensegrity mod-
ule for various prestress levels

Prestress of
bars@MPa#

1st mode
@Hz#

2nd mode
@Hz#

3rd mode
@Hz#

0.01 0.2056 10.62 16.22
0.1 0.6502 10.62 16.22
1.0 2.056 10.63 16.23
2.0 2.908 10.63 16.23
3.0 3.561 10.63 16.23
4.0 4.112 10.64 16.24

Table 2 Natural frequencies of the two-stage tensegrity mod-
ule for various prestress levels

Prestress of
bars@MPa#

1st mode
@Hz#

2nd mode
@Hz#

3rd mode
@Hz#

0.01 0.1819 20.93 20.93
0.10 0.5753 20.94 20.94
1.00 1.819 20.96 20.96
2.00 2.571 20.99 20.99
3.00 3.149 21.02 21.02
4.00 3.635 21.05 21.05
24 Õ Vol. 68, JANUARY 2001
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increment and the initial internal force due to prestresses reach
critical loadPcr of the bar, buckling could take place. It is note
that the response of tensegrity modules withMx.0 do not ex-
hibit the hardening response shown in Figs. 6~a! and 6~b!. For
example, double-layer tensegrity grids withMx.0 exhibit ‘‘lin-
ear’’ response until some bars buckle or some cables s
~@8,31#!.

8 Tensegrity Configuration Spaces
In constructing tensegrity structures, it is not possible to bu

them without initial geometrical imperfections. Bars and cab
may not have the exact intended lengths computed from the in
equilibrium analyses. Nodes may not be placed precisely at sp
fied positions. Further, designers may wish to move nodes
neighboring locations to improve structural functions or archit
tural appearances. Tensegrity structures with a Maxwell num
Mx<0 collapse with minute disturbances if the tensegrity con
tions are violated. The initial geometry inRnV must satisfy the
characteristic Eq.~11a! that assures the existence of a prestr
modesnE

in the element force vector spaceRnE. In the configu-

ration spaceRnV, Eq. ~11a! defines a hypersurface and imposes
holonomic constraint with respect to adjustable nodal coordina
For the spherical tensegrity module, the hypersurface at the ne
borhood of node 5 is drawn in Fig. 7 by fixing remaining nod
coordinates.~The dimension of the module is the same as t
presented in Section 6.! The ideal position of node 5 is indicate
by the base point of the gradQ̂ vector. The shaded hypersurfac
indicates admissible nodal positions of node 5. Figure 8 illustra
the hypersurfaces for node 9 and node 10 of the two-stage c
drical tensegrity module by fixing the remaining nodal coor
nates. For example, the hypersurface of node 9 was compute
fixing all remaining nodal coordinates, including those of node
at the ideal initial configuration. The ideal positions of node 9 a
10 are indicated in Fig. 8 by the base positions of gradQ̂ vectors.
Figures 7 and 8 illustrate the existence of connected admiss
nodal positions in the neighborhood of ideal nodal positions. T
figures also indicate the prohibited directions indicated by gradQ̂
normal to the hypersurface~11a!. Moving a node to a position
connected to an ideal or current nodal position on the admiss

Fig. 6 „a… Load-displacement relation of the two-stage tenseg-
rity module; „b… element forces—load-point displacement rela-
tion of the two-stage tensegrity module
Transactions of the ASME
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hypersurface only satisfies the condition for the existence o
prestress modes(0) that satisfiesA(0)s(0)50. In addition, the
prestress mode must be admissible with tension in cables
compression in bars.

In order to show that there exists such an admissible pres
mode for small change of nodal coordinatesDj0 , Murakami@19#
performed a perturbation analysis in which the initial equilibriu
matrix was perturbed from the idealA0[A(0) to A5A01«A1
where« is a small real number indicating a norm ofDj0 . It was
shown that the resulting changes in prestress and infinites
mechanism modes in~19a, 19b! are also on the order ofe. The
above existence of admissible prestress modes is shown onl
small nodal changes based upon local analyses.

For redundant tensegrity structures withr A5nV and Mx.0,
infinitesimal mechanism modes do not exist due to Calladin
relation ~3! ~see Section 4!. The quadratic form associated wit
AT(0)A(0) becomes positive definite instead of positive sem
definite. The redundant tensegrity structures can take any con
ration as long as connections between bars and cables do
change.~A continuous change in nodal coordinates of tenseg
structures without altering connections involves ‘‘algebraic top
ogy’’ dealing with simplicial complexes~for example, Frankel
@32#!, which is beyond the scope of the present paper.!

9 Concluding Remarks
A set of characterization procedures was presented and i

trated for a six-bar spherical tensegrity module and a two-st
cylindrical tensegrity module. The procedures include:~i! compu-

Fig. 7 The configuration space near node 5 of the spherical
tensegrity module

Fig. 8 The configuration spaces near node 9 and node 10 of
the two-stage tensegrity module
Journal of Applied Mechanics
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tation of the Maxwell number~2!, ~ii ! analytically finding initial
shape and an admissible prestress mode,~iii ! numerical computa-
tion of prestress and infinitesimal mechanism modes,~iii ! modal
analyses at a prestressed configuration,~iv! computation of load-
displacement curves for the determination of a critical load
bars, and~v! the computation of hypersurfaces in the configu
tion space.

It was found that all infinitesimal mechanism modes were i
tropically stiffened at each node by a single prestress mode
shown in (9f ). Further, if bars are properly designed again
buckling, tensegrity modules with infinitesimal mechanisms e
hibit stable hardening load-displacement relations.
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Appendix

Reduced Equilibrium Equations for a Two-Stage Tenseg-
rity Module. In order to obtain both prestress modes and
characteristic Eq.~13!, the initial equilibrium equations are de
rived for a two-stage cylindrical tensegrity module with three b
at each stage. The following parameters are used to analytic
describe nodal coordinates:
b: the bar length;
r 0 : the radius of the circumscribing circles of the equilateral t
angles 1–3 and 10–12;
r m : the radius of the circumscribing circles of the equilateral t
angles 4–6 and 7–9;
a: the additional twist angle;
g: the overlap ratio in elevation.

Further, for simplicity of notation, thex, y-coordinates of each
node are expressed by using~complex variable! phasor notation,
while the z-coordinate is expressed by using the standard Ca
sian component. For example, thex, y, andz-coordinates of node
2 are expressed as (r 0e2 ip/6,0) instead of (r 0 cosp/6,
2r 0 sinp/6,0). With this notation, the nodal coordinates are e
pressed as follows:

1~r 0ei7p/6,0!, 2~r 0e2 ip/6,0!, 3~r 0eip/2,0!,

4~r mei ~2p/61a!,h!, 5~r mei ~p/21a!,h!, 6~r mei ~7p/61a!,h!,

7~r mei ~p/61a!,~12g!h!, 8~r mei ~5p/61a!,~12g!h!,

9~r met~2p/21a!,~12g!h!, 10~r 0e2 ip/2,~22g!h!,

11~r 0eip/6,~22g!h!, 12~r 0ei5p/6,~22g!h!.

Having all nodal coordinates, it is a routine calculation to fi
element lengths:

l 0

r 0
5), (A1a)

l v

r 0
5AS b

r 0
D 2

22)
r m

r 0
sinS p

3
1a D , (A1b)

l s

r 0
5A~12g2!S r m

r 0
D 2

1g2H S b

r 0
D 2

2122
r m

r 0
sinS p

6
1a D J ,

(A1c)
l d

r 0
5A~12g!2S b

r 0
D 2

1g~22g!H 11S r m

r 0
D 2J 22

r m

r 0
H cosa2g~22g!sinS p

6
1a D J , (A1d)
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r 0
5AS b

r 0
D 2

212S r m

r 0
D 2

22
r m

r 0
sinS p

6
1a D . (A1e)

In what follows, the initial equilibrium Eq.~8! at nodes 1 and 9
with f(0)50 are presented in vector form by expressing direct
cosinesG[g(0) in terms of nodal position vectors and eleme
lengths. By utilizing the connection diagram in Fig. 4~a!, the ini-
tial equilibrium equation at node 1 is expressed as

~x22x11x32x1!
s0

l 0
1~x62x1!

sv

l v
1~x92x1!

sd

l d

1~x42x1!
sb

b
50, (A2)

wherexi denotes the position vector of nodei.
The equilibrium equation at node 9 becomes

~x102x9!
sv

l v
1~x12x9!

sd

l d
1~x62x9!

s1

l s
1~x42x9!

s2

l s

1~x122x9!
sb

b
50. (A3)

Equations~A2! and~A3! could be written in matrix form to yield
the reduced initial equilibrium equation:A(0)s(0)50. However,
in order to expedite subsequent analyses, element internal fo
are combined with element lengths as

A8~0!s8~0!50, (A4a)

where

s8~0!5Fs0

l 0

sv

l v

sd

l d

s1

l s

s2

l s

sb

b GT

, (A4b)

and the elements ofA8(0)5@a8 i j # are defined as follows:

a118 5
3)

2
r 0 , a128 5

)

2
r 02r m cosS p

6
1a D ,

a138 5
)

2
r 01r m sina,

a148 5a158 50, a168 5
)

2
r 01r m cosS 2

p

6
1a D ,

a218 5
3

2
r 0 , a228 5

r 0

2
2r m sinS p

6
1a D , a238 5

r 0

2
2r m cosa,

a248 5a258 50, a268 5
r 0

2
1r m sinS 2

p

6
1a D ,

a318 50, a328 5h, a338 5~12g!h, a348 5a358 50, a368 5h,

a418 50, a428 52r m sina, a438 52
)

2
r 02r m sina,

a448 52r m sinS p

3
1a D ,

a458 5r m sinS p

3
2a D , a468 52

)

2
r 02r m sina,

a518 50, a528 52r 01r m cosa,

a538 52
r 0

2
1r m cosa, a548 5r m sinS p

6
2a D ,

a558 5r m sinS p

6
1a D , a568 5

r 0

2
1r m cosa,
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a618 50, a628 5h, a638 52~12g!h, a648 5a658 5gh, a668 5h.
(A4c)

When a nontrivials8(0) exists, the determinant ofA8(0) becomes
zero. ~The resulting characteristic Eq.~13! may be obtained by
using a symbolic manipulator.! In what follows, an analytical
method is used to obtain both prestress modes and the chara
istic equation by knowing that a nontrivial solutions8(0) exists
only when rank ofA8(0) reduces from six to five. Therefore, Eq
~A4a! can be solved uniquely fors0 / l 0 , sv / l v , sd / l d , s1 / l s , and
s2 / l s when sb /b is prescribed by using the first five rows o
~A4a!. The last row yields the consistency condition, which b
comes the characteristic Eq.~13!.

In order to eliminates0 / l 0 from the first and second rows, on
subtracts) times the second row from the first row. The resultin
equation and the third row can be used to solve forsv / l v and
sd / l d , as shown in~14b! and ~14d!, for a prescribedsb /b. By
using the second row of~A4a! with ~14b! and ~14d!, one solves
for s0 / l 0 to find ~14a!. The fourth and fifth rows of~A4a! are used
to find s1 / l s ands2 / l s in ~14c!. Since there are only five linearly
independent rows in~A4a!, the sixth row is linearly dependent o
the first five rows. Therefore, the sixth row furnishes a consiste
condition that yields the characteristic Eq.~13!. The above ana-
lytical procedure can be easily applied to two-stage cylindri
tensegrity modules with m-bars at each stage and n-stage c
drical tensegrity modules with m-bars at each stage.
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Nonlinear Stability,
Thermoelastic Contact, and the
Barber Condition
The behavior of a one-dimensional thermoelastic rod is modeled and analyzed. The
held fixed and at constant temperature at one end, while at the other end it is fr
separate from or make contact with a rigid wall. At this free end we impose a pres
and gap-dependent thermal boundary condition. This condition, known as the B
condition, couples the thermal and elastic problems. Such systems have previousl
shown to undergo a bifurcation from a unique linearly stable steady-state solutio
multiple steady-state solutions with alternating stability. Here, the system is studied
the asymptotic matching techniques of boundary layer theory to derive short-time,
time, and uniform expansions. In this manner, the analysis is extended into the non
regime and dynamic information about the history dependence and temporal evolut
the solution is obtained.@DOI: 10.1115/1.1345699#
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1 Introduction
The analysis of thermal contact problems has revealed a we

of interesting phenomena. Beginning with J. R. Barber in 19
~@1#!, who pointed out that the solution of such problems po
certain difficulties, and continuing to this day, numerous resea
ers have turned their attention to these problems. Barber obse
that the classical assumption of perfect insulation during a se
rated phase and perfect thermal contact during contact led to m
els with solutions which were unacceptable on physical groun
Introducing a pressure and temperature-dependent boundary
dition, which would subsequently become known as the Bar
condition, he allowed for a smooth transition between the in
lated and perfect thermal contact states. Studying a linearized
sion of a thermal contact problem which included the Barber c
dition, he showed that the paradoxes inherent in simpler mo
could be avoided and physically relevant solutions recovered

In 1980, Barber, Dundurs, and Comninou@2# investigated a
thermal contact problem using the Barber condition in a o
dimensional model of a thermoelastic rod. Imposing a tempera
gradient across the rod, they demonstrated that the system u
went a bifurcation from a unique linearly stable steady-state s
tion to multiple solutions with alternating stability as the mag
tude of the thermal gradient was varied.

Since that time, various authors have explored the Barber c
dition and its implications for thermal contact problems~@3,4#!.
While such analyses have been extended to multiple mate
~@3,5,6#!, various geometries~@7,8#!, and to numerical simulations
~@4#!, most theoretical work to date has relied upon linear stabi
theory. In a recent article~@9#! we developed a nonlinear theor
which described the history dependence and dynamics of s
tions near the bifurcation point for a simplified model of a on
dimensional thermoelastic rod. Our model did not, however,
clude the Barber condition. Since the Barber condition is mu
more physically realistic than the boundary condition used
~@9#!, it is desirable to have a nonlinear theory for a model wh
incorporates the Barber condition. We carry out such an anal
here.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
24, 1999; final revision, June 26, 2000. Associate Editor: J. R. Barber. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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While the model studied here differs from the model studied
~@9#!, only in the use of the Barber condition, the method of ana
sis differs significantly. In particular, here we use the asympto
matching techniques of boundary layer theory to derive sh
time, long-time, and uniform asymptotic expansions of the so
tion. In our prior analysis we used the method of multiple sca
or two-timing, to accomplish similar goals. The switch in tec
niques is not merely a matter of taste. Rather, any attempt to a
multiple scale techniques to the model considered herein will s
encounter algebraic difficulties. That is, such an attempt beco
analytically intractable. However, as is shown, boundary la
theory may be applied with little difficulty. This not only allow
us to carry out the analysis for the one-dimensional rod mo
with the Barber condition, but gives us hope that similar tec
niques will yield a nonlinear stability theory for more complicate
multidimensional problems.

We begin in Section 2 by formulating the governing equatio
for our model. We make the standard assumption that quasi-s
uncoupled thermoplasticity is valid and use the Signorini cont
condition to capture periods of separation and contact. We imp
the Barber condition on the thermal part of the problem, leav
the contact resistance function unspecified. A solution is c
structed for the elastic problem and the system of governing eq
tions is reduced to a nonlocal and nonlinear heat conduction p
lem. In Section 3, we impose physically realistic constraints
the contact resistance and develop a linear theory. We review
analysis due to Barber@2#, and show that the system studied u
dergoes a bifurcation from a single linearly stable steady-s
solution to multiple steady-state solutions. Finally, in Section
we study the behavior of our system near the bifurcation po
That is, we inquire as to what happens when the system is sta
nearby the now linearly unstable steady-state solution. Us
asymptotic matching techniques, we incorporate the effect of
bilizing nonlinear terms into our theory and obtain informatio
about the dynamics and history dependence of the solution.
show that as conjectured, the solution does indeed approach
of the stable solutions obtained in the linear theory.

2 Formulation of the Model
We consider a one-dimensional thermoelastic rod of lengtL

suspended between two rigid walls as pictured in Fig. 1. We
sume that the rod possesses constant thermal and elastic ma
properties, is homogeneous and isotropic, and that uncou
quasi-static thermoelastic theory is valid. With these assumpt

t.
n on
tment
nd

he
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in mind, we formulate the equations governing the tempera
distribution,T, elastic displacement,u8, and stress,s8, within the
rod. In the dimensionless variables

u5
T2TL

TR2TL
, t5

k

rcpL2 t8, x5
x8

L
, u5

u8

L
, s5

s8

E
,

(2.1)

these equations take the form

]u

]t
5

]2u

]x2 0,x,1 (2.2)

]2u

]x2 5m
]u

]x
0,x,1 (2.3)

s5
]u

]x
2mu 0,x,1 (2.4)

u~0,t !50 (2.5)

u~0,t !50 (2.6)

H u<0
s<0

us50
J at x51 (2.7)

R~h!
]u

]x
~1,t !512u~1,t ! (2.8)

where here

m5a~TR2TL!, R~h!5
kR̂~h!

L
(2.9)

and

h5s~1,t !2u~1,t !. (2.10)

Note thatm may be interpreted as a nondimensional coefficien
thermal expansion or as a dimensionless measure of a the
gradient in the problem, whileR is a dimensionless form of the
contact resistance function. In fact,R may be thought of as a
variable Biot number, measuring the relative strengths of h
conduction within the rod and ‘‘convection’’ through the rod
right end. The variableh is equal to the contact pressure durin
contact (h,0) and the gap size during periods of separationh
.0). For a full derivation of the model above, the reader is
ferred to~@9#!. As mentioned in the Introduction, the model abo
differs from that in~@9#! in that the boundary condition at the righ
end of the rod in~@9#! is replaced here with the Barber conditio
Eq. ~2.8!. The reader will also notice that in the above we ha
assumed a reference gap width of zero in Eq.~2.7!.

Now, we note that the problems foru ands are linear and may
be solved exactly. That is, we may integrate Eq.~2.3! twice and
use Eqs.~2.4!, ~2.6! and ~2.7! to solve foru ands. We find

Fig. 1 Sketch of the model geometry
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u~x,t !5mE
0

x

u~z,t !dz2x maxH dE
0

1

u~z,t !dz,0J (2.11)

and

s~x,t !52maxH mE
0

1

u~z,t !dz,0J . (2.12)

Using these solutions, we may evaluateh, i.e.,

h5s~1,t !2u~1,t !52mE
0

1

u~z,t !dz. (2.13)

Hence, we have reduced the problem to one foru only. We are
left with

]u

]t
5

]2u

]x2 0,x,1 (2.14)

u~0,t !50 (2.15)

R~h!
]u

]x
~1,t !512u~1,t ! (2.16)

h52mE
0

1

u~z,t !dz. (2.17)

3 Linear Theory
In order to proceed with the analysis, we must further char

terize the contact resistance function,R(h). We recall from the
definition of h, Eq. ~2.10!, that h.0 corresponds to separatio
from the wall, and that in this caseh measures the size of this gap
Physically, we expect the contact resistance to increase mono
cally with gap size. On the other hand,h,0 corresponds to con
tact with the wall, and in this caseh measures the contact pre
sure. Here, we expect contact resistance to decre
monotonically with increasing pressure. Further, contact re
tance must be a positive quantity and on physical grounds we
led to expect thatR(h) appears as pictured in Fig. 2.

With these assumptions aboutR in mind, we may investigate
steady-state solutions of the system~2.14!, ~2.15!, and~2.16!. We
begin by setting the time derivative to zero in Eq.~2.14!, integrat-
ing the resulting ode and using the boundary conditions, E
~2.15! and~2.16!, to determine that steady solutions must have
form

u* ~x!5ax (3.1)

Fig. 2 A typical contact resistance function
JANUARY 2001, Vol. 68 Õ 29
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wherea satisfies

a5
1

11R~2ma/2!
. (3.2)

Our observations about the nature ofR allow us to plot the left
and right sides of Eq.~3.2! on the same plot as functions ofa.
This is done in Fig. 3. With physically realistic assumptions onR,
it is clear that we will always have at least one point of inters
tion, and hence at least one steady solution. We also note
depending upon the exact nature ofR, we may have more than
one steady-state solution. To clarify this situation further, we n
more detailed information about the contact resistance. For s
plicity, we specify the value ofR at a convenient point. In par
ticular, we shall assume thatR(2m/4)51. This implies thata
51/2 is a solution of Eq.~3.2! and henceu* (x)5x/2 is a steady-
state solution of the system~2.14!, ~2.15!, and ~2.16!. Next, we
define

F~h!5
1

11R~h!
(3.3)

and note thatF(2m/4)51/2. In order to have a bifurcation of th
type investigated by Barber@2#, it is easy to see that we must hav
that h52m/4 be an inflection point forF. That is, we assume
F9(2m/4)50 andF-(2m/4).0. This implies that we may ex
pandF in a Taylor series abouth52m/4 as follows:

F~h!5
1

2
1~h1m/4!F8~2m/4!1

~h1m/4!3

6
F-~2m/4!1¯ .

(3.4)

Throughout the remainder of this paper we shall localize
analysis about the steady-state solutionu* (x)5x/2. That is, in
addition to assuming thath52m/4 is an inflection point forF,
we assume that nearby this inflection pointF is well approximated
by the first three nonzero terms in the Taylor series~3.4!.

Next, we investigate the linear stability of the steady solut
u* (x)5x/2. Accordingly we seek a solution to~2.14!, ~2.15!, and
~2.16! in the form

u~x,t !5
x

2
1f~x!e2l2t (3.5)

where uf(x)u!1. Inserting this ansatz into our governing equ
tions, expanding the nonlinear terms in Taylor series, and omit
quadratic and higher order terms inf, we obtain the eigenvalue
problem

Fig. 3 Geometric solution of the steady-state problem
30 Õ Vol. 68, JANUARY 2001
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d2f

dx2 1l2f50 (3.6)

f~0!50 (3.7)

f8~1!1f~1!54dE
0

1

f~z!dz. (3.8)

Hered5mR8(2m/4)/8. This linear eigenvalue problem has a s
lution f whenl satisfies

l2 cos~l!14d~cos~l!21!1l sin~l!50. (3.9)

The solutions of this equation in conjunction with Eq.~3.5! deter-
mine the stability of the perturbationf; if Re(l2).0 (,0), then
the steady state is linearly stable~unstable!. The solutions of Eq.
~3.9! were studied by Barber@2#; we do not repeat his analysi
here. Rather, we simply note that in our notation, Barber’s re
is that d,1 corresponds to linear stability,d.1 corresponds to
linear instability, whiled51 is the marginally stable case.

With the assumptions mentioned above concerningF, another
alternative characterization of the bifurcation asd passes through
one is possible. Retaining only up to cubic terms, and using~3.4!
in the equation defining the steady states,~3.2!, we obtain a cubic
polynomial for a. By construction, one solution is of course,a
51/2. The other two solutions are given by

a5
1

2
6S 2

m D 3/2A 6~d21!

F-~2m/4!
. (3.10)

We see that these solutions are unphysical~imaginary! for d,1,
and that we pick up two new physical solutions asd passes
through one. At least locally, the bifurcation is of the standa
pitchfork type. The linear theory is summarized in Fig. 4.

4 Nonlinear Theory
In the previous section we found and investigated the lin

stability of steady-state solutions to our model, i.e., Eqs.~2.14!–
~2.16!. We made physically realistic assumptions about the c
tact resistance functionR, and determined thatu* (x)5x/2 was a
solution for all positive values of the parameterd. We showed that
the linear stability of this solution changed asd passed through
one. In particular, ford,1, this solution was found to be linearl
stable, while ford.1, linear theory predicts that any infinitesima
perturbation will grow exponentially. Clearly, in this paramet
range, the linear theory is only valid for a limited time. In th
section, we use the asymptotic matching techniques of boun
layer theory to extend our analysis into the nonlinear regime. T
is, we investigate the nature of the solution to our governing eq
tions whend is nearby, but greater than one, and the initial co

Fig. 4 Bifurcation diagram showing the constant in the steady
solution as a function of the bifurcation parameter, d
Transactions of the ASME
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ditions are such that the system starts near the now unstable
tion, u* . Our goal is to develop an approximate solution which
valid for all time, thereby allowing us to understand the dynam
and history dependence of solutions near this bifurcation poin

We begin, by imposing the initial condition

u~x,0!5
x

2
1eh~x!. (4.1)

Here,e!1 andh(x) is an arbitraryO(1) function. Note that this
definese and starts our system nearu* (x). It is now convenient to
rescale by settingu5ev1u* (x). Introducing this rescaling into
Eqs. ~2.14!, ~2.15!, ~2.16!, and ~4.1!, expanding the nonlinea
terms in a Taylor series and retaining terms up toO(e2) we obtain

]v
]t

5
]2v
]x2 (4.2)

v~0,t !50 (4.3)

]v
]x

~1,t !1v~1,t !5S 4dE
0

1

v~z,t !dz D F11e
]v
]x

~1,t !2ev~1,t !G
2e2c0

2S E
0

1

v~z,t !dz D 3

(4.4)

v~x,0!5h~x! (4.5)

where herec0
25mF-/3 and is, by assumption, a positive numbe

We assumec0
25O(1).

Next, we letd511ge2 whereg5O(1) and we seek a solution
in the form

v~x,t !;v0~x,t !1ev1~x,t !1e2v2~x,t !1¯ . (4.6)

Inserting this expansion into Eqs.~4.2!–~4.5!, and equating to
zero coefficients of powers ofe, we find thatv0(x,t) satisfies

]v0

]t
5

]2v0

]x2 (4.7)

v0~0,t !50 (4.8)

]v0

]x
~1,t !1v0~1,t !54E

0

1

v0~z,t !dz (4.9)

v0~x,0!5h~x!. (4.10)

We construct a solution using eigenfunction expansion. Acco
ingly, we seek solutions in the formA(t)f(x), separate variables
and obtain the eigenvalue problem, Eqs.~3.6!–~3.8!, with d51
for the spatial eigenfunctions,f(x). Hence the eigenvalues ar
given by Eq.~3.9! with d51. Further, from the linear theory in
the previous section and from Barber’s analysis, we note that
is an eigenvalue and that all other eigenvalues are purely
Next, we must take our analysis one step further and explic
construct the eigenfunctions and derive an expansion theo
Towards this end it is useful to remove the integral from t
boundary condition, Eq.~3.8!. We integrate Eq.~3.6! from zero to
one, solve for the integral, and use this result to eliminate
integral in Eq.~3.6!. This yields the equivalent system

d2f

dx2 1l2f50 (4.11)

f~0!50 (4.12)

4S df

dx
~0!2

df

dx
~1! D5l2S df

dx
~1!1f~1! D . (4.13)

We note thatl50 remains an eigenvalue of this system. Ho
ever, the new formulation,~4.11!–~4.13!, makes clear the fact tha
we are faced with a nonstandard eigenvalue problem. That is
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eigenvalue parameter,l, appears in the boundary conditions. Co
sequently, we cannot simply consider the operatorL52d2/dx2

and rely upon the theory of eigenfunction expansion forLf
52l2f. Rather, we must exercise care in defining an opera
constructing an adjoint, and in deriving an expansion theorem.
follow a typical approach as outlined, for example, in Friedm
@10#.

We begin by considering the space of two component vec
U, whose first component is a real-valuedC2 function,u(x), and
whose second component is a real number,u1 . We define the
inner product of two vectors in this space by

^U,V&5E
0

1

u~x!v~x!dx1u1v1 . (4.14)

Next, we restrict our attention to the subspace,D, of vectorsU
such thatu(0)50 andu15u(1)1u8(1). Then, we define an op-
eratorL acting on elementsU of D by

LU5S 2
d2u

dx2

4S du

dx
~0!2

du

dx
~1! D D . (4.15)

Note that our eigenvalue problem, Eqs.~4.11!–~4.13!, is now sim-
ply stated as find a vectorU in D such thatLU5l2U. Further, we
may define an adjoint operator,L* , where

L* V5S 2
d2u

dx2

dv
dx

~1!
D (4.16)

and acts on elements,V, of the subspaceD* defined as two com-
ponent vectors satisfyingv8(1)5v(0)2v(1) andv152v(0)/4.
The reader may easily verify that with the inner product,~4.14!,
we have^LU,V&5^U,L* V&.

Next, we may attempt to derive an expansion theorem
solve our leading order problem. First, we note, of course, that
discrete spectrum ofL is given by Eq.~3.9!. The fact that our
operator is not self-adjoint raises the possibility thatL also pos-
sesses a continuous spectrum which would effect the nature o
eigenfunction expansion. By using a Green’s function approa
we may rule out this possibility. The details of obtaining this n
result are lengthy, the interested reader is referred to Append
of ~@9#! for an example of this calculation. This having been sa
we now construct eigenvectors. We find

Un5S an sin~lnx!

ln

anln cos~ln!1an sin~ln!

ln

D (4.17)

wherel050 and the remainingln’s are the real nonzero solu
tions of Eq.~3.9! for d51. Similarly, we can construct the fol
lowing adjoint eigenfunctions from our adjoint eigenvalu
problem:

Vn5S bnS cos~lnx!1S 4 sin~ln!2ln

4 cos~ln! D sin~lnx! D
2

bn

4

D
(4.18)

where, of course, theln’s are the same as above. We note th
^Un ,Vm&50 for all nÞm and that ^Un ,Vn&Þ0 for all nÞ0
while ^U0 ,V0&50. Further, we choose thean’s, for nÞ0 so that
^Un ,Vn&51 and we choosea0 so that^U0 ,U0&51.
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Now, we can construct a solution to our leading order probl
by using the eigenvectors and the adjoint eigenvectors just
fined. We seek a solution lying in the subspaceD in the following
form:

S v0~x,t !

]v0

]x
~1,t !1v0~1,t !D 5(

n50

`

Ane2ln
2tUn . (4.19)

The governing equation and the boundary conditions are of co
satisfied, while theAn’s are still unknown. They will be deter
mined by our initial conditions. We require that

S v0~x,0!

]v0

]x
~1,0!1v0~1,0!D 5S h~x!

h1
D5(

n50

`

AnUn (4.20)

whereh1 and theAn are yet to be determined. If we take an inn
product withVm , wheremÞ0, we findAm5^H,Vm& where

H5S h~x!

h1
D . (4.21)

Next, we take an inner product withV0 and find ^H,V0&50
which implies

4E
0

1

h~x!dx5h1 (4.22)

and hence uniquely determinesh1 . Now, A0 is still undetermined.
To remedy this situation, we take an inner product withU0 across
Eq. ~4.20! and solve forA0 to find

A05^H,U0&2(
n51

`

An^Un ,U0&. (4.23)

We now have a complete solution forv0(x,t).
Noting thatl050 and that all otherln’s are real, we see from

Eq. ~4.19! that all modes except for thel0 mode decay in the
large time limit. This implies that ast→` we have v0(x,t)
→A0A3/13x. If we now attempted to compute a solution fo
v1(x,t), which is forced by thev0 solution, we would find that
v1→` ast→`! This implies that our expansion is nonuniform
time, and hence only serves as ashort-timesolution. To obtain the
long-time behavior of our system, we turn to boundary lay
theory.

We begin by changing to the slow or long time scalet5e2t.
Our problem forv, Eqs.~4.2!–~4.5!, becomes

e2
]v
]t

5
]2v
]x2 (4.24)

v~0,t!50 (4.25)

]v
]x

~1,t!1v~1,t!5S 4dE
0

1

v~z,t !dz D F11e
]v
]x

~1,t!2ev~1,t!G
2e2c0

2S E
0

1

v~z,t!dz D 3

. (4.26)

Here, we seek a solution in the form

v~x,t!;v0~x,t!1ev1~x,t!1e2v2~x,t!1¯ . (4.27)

Introducing this expansion into our long-time Eqs.~4.24!–~4.26!,
and equating to zero coefficients of powers ofe we again obtain
an infinite set of equations which sequentially determine thevn .
In order to determine the leading order solution, we shall need
equations up to ordere2. Our order one equations are

]2v0

]x2 50 (4.28)
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v0~0,t!50 (4.29)

]v0

]x
~1,t!1v0~1,t!54E

0

1

v0~z,t!dz. (4.30)

This system may be solved and we findv0(x,t)5A(t)x where
A(t) is an undetermined function of the slow time variable,t.
Using this we may simplify theO(e) system and we find

]2v1

]x2 50 (4.31)

v1~0,t!50 (4.32)

]v0

]x
~1,t!1v0~1,t!54E

0

1

v1~z,t!dz. (4.33)

This system may also be solved and we findv1(x,t)5B(t)x
whereB is an unknown function. Using ourO(1) andO(e) so-
lutions we can simplify theO(e2) problem. We find thatv2(x,t)
satisfies

]v0

]t
5

]2v2

]x2 (4.34)

v2~0,t!50 (4.35)

]v2

]x
~1,t!1v2~1,t!54E

0

1

v2~z,t!dz14gE
0

1

v0~z,t!dz

2c0
2S E

0

1

v0~z,t!dz D 3

. (4.36)

Using our solution forv0 , integrating Eq.~4.34! with respect tox
and applying the boundary conditions, we find that this syst
only possesses a solution ifA(t) satisfies

dA

dt
54gA2

c0
2

4
A3. (4.37)

This ordinary differential equation determinesA(t) up to an ar-
bitrary constant which is obtained by matching back to the sh
time solution. That is the initial condition forA(t) is given by

A~0!5 lim
t→`

v0~x,t !

x
5A0A 3

13
. (4.38)

Our short-time solution, Eq.~4.19!, and our long-time solution,
A(t)x, may be assembled into a uniformly valid solution. That

v~x,t !;A~e2t !x2A0A 3

13
x1(

n50

`

Ane2ln
2t

an sin~lnx!

ln
1O~e!

(4.39)

gives the leading order behavior of solutions for all time.

5 Discussion
We began by formulating a model of a one-dimensional th

moelastic rod subjected to conditions which allowed for th
moelastic contact and the possibility of a thermoelastic instabil
In contrast to our earlier nonlinear stability theory,~@9#!, in this
model we included a general form of the Barber condition. Phy
cally based assumptions about the nature of the contact resis
function,R(h), were made. With these assumptions we set ou
verify Barber’s linear theory~@2#!, and to extend his analysis int
the nonlinear regime.

The linear theory showed that for a certain class of cont
resistance functions, or more precisely for suitable assumption
the reciprocal contact resistance function,F, the system under-
went a bifurcation asd passed through one. That is, just as Barb
discovered, there is a transition from one stable stationary solu
Transactions of the ASME
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to three solutions with alternating stability. The solution that w
stable undergoes an exchange of stabilities and becomes uns
for d.1.

Next, we attempted to extend the linear analysis into the n
linear regime in the neighborhood ofd51. In doing so, we hoped
to verify the conjecture of Barber that solutions which start n
the now unstable steady-state approach one of the two line
stable solutions uncovered in the linear analysis. Further,
would like the nonlinear analysis to clarify what initial condition
go to which solution and how they get there. That is, we wan
understand history dependence and dynamics in the neighbor
of the bifurcation. To accomplish this goal, we developed a u
formly valid asymptotic approximation to the solution using t
asymptotic matching techniques of boundary layer theory. Th
techniques yielded the following asymptotic approximation to
solution:

u~x,t !;
x

2
1eA~e2t !x2eA0A 3

13
x

1e(
n50

`

Ane2ln
2t

an sin~lnx!

ln
1O~e2! (5.1)

whereA(t) satisfied the amplitude equation

dA

dt
54gA2

c0
2

4
A3 (5.2)

with initial condition

A~0!5A0A 3

13
. (5.3)

Now, as time tends to infinity all contributions from the sum
Eq. ~5.1! decay to zero or cancel with other terms. This means
the limiting behavior is given by

lim
t→`

u~x,t !;
x

2
1ex lim

t→`

A~e2t !1O~e2! (5.4)

and our questions concerning nonlinear stability may be answ
by examining the governing equation forA, i.e., Eq. ~5.2!. We

Fig. 5 Behavior of solutions to the amplitude equation, which
governs A „t…
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note that Eq.~5.2! includes a cubic nonlinearity. Recall that th
term arose due to the nonlinear nature of the contact resist
function, R(h). Further note that this nonlinearity exerts a sta
lizing influence on the solution. In Fig. 5, we sketch the pha
plane for this amplitude equation. We see thatA approaches
64Ag/c0 according as the initial condition is positive or negativ
This implies that the solution tends toax where

a5
1

2
6S 2

m D 3/2A 6~d21!

F-~2m/4!
. (5.5)

These are precisely the solutions uncovered by the linear th
and hence Barber’s conjecture is verified. Further, question
history dependence may now be answered by simply examin
the initial condition onA. The sign of this condition dictates
whether we tend to the positive or negative solution. This sign
turn simply depends on the direction of the perturbation to
unstable steady solution. Similarly, questions concerning dyn
ics of solutions are answered by the time behavior of Eqs.~5.1!
and ~5.2!.

Finally, a comment about the method of analysis is in order.
stated in the Introduction, the switch from the method of multip
scales to boundary layer theory was necessary in order to be
to carry out the analysis. As can be seen from the section on
nonlinear theory, this technique allows one to explicitly solve t
reduced equations at each order. Such solutions are algebra
intractable with the multiscale approach. This phenomena
been observed in nonlinear stability theory for other types of pr
lems, examples may be found in~@11#! or ~@12#!. This simplicity
does, however, come at a price. In particular, we only discover
slow time behavior of thedominantmode. As all other modes
decay, this price is not too steep, but yet it should be ackno
edged. The gift of simplicity, however, gives one hope that m
tidimensional nonlinear stability theories are within reach. As
final note of inspiration to the reader, we observe that Barbe
linear theory has now been extended to a nonlinear theory
neighborhood of the bifurcation. Such a nonlinear theory is of
referred to as a weakly nonlinear stability theory. A global no
linear stability theory would be of interest and remains a challe
for the curious researcher.
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Energy Pumping in Nonlinear
Mechanical Oscillators: Part
I—Dynamics of the Underlying
Hamiltonian Systems
The systems considered in this work are composed of weakly coupled, linear and
tially nonlinear (nonlinearizable) components. In Part I of this work we present numer
evidence of energy pumping in coupled nonlinear mechanical oscillators, i.e., of one
(irreversible) ‘‘channeling’’ of externally imparted energy from the linear to the nonl
ear part of the system, provided that the energy is above a critical level. Clearly, no
phenomenon is possible in the linear system. To obtain a better understanding o
energy pumping phenomenon we first analyze the dynamics of the underlying Hamil
system (corresponding to zero damping). First we reduce the equations of motion
isoenergetic manifold of the dynamical flow, and then compute subharmonic orbi
employing nonsmooth transformation of coordinates which lead to nonlinear boun
value problems. It is conjectured that a 1:1 stable subharmonic orbit of the underl
Hamiltonian system is mainly responsible for the energy pumping phenomenon. This
cannot be excited at sufficiently low energies. In Part II of this work the energy pum
phenomenon is further analyzed, and it is shown that it is caused by transient reso
capture on a 1:1 resonance manifold of the system.@DOI: 10.1115/1.1345524#
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1 Introduction
In this and a companion paper we study nonlinear ene

pumping in coupled mechanical oscillators. By this terminolo
we denote the controlled spatial transfer of vibrational ene
from the point of its initial generation to a different~predeter-
mined! point where it eventually localizes. In essence, the ene
pumping phenomenon corresponds to the controlled one-
channeling of the vibrational energy to a passive nonlin
‘‘sink’’ where it localizes and diminishes in time due to dampin
dissipation. There exist numerous studies in the literature
‘‘static’’ mode localization, spatial motion confinement, and
energy transfer due to internal resonances in coupled mecha
oscillators. The nonlinear energy pumping phenomenon discu
herein is a distinct nonlinear mechanism of energy transfer sin
is realized through resonance capture~@1#!.

Linear and nonlinear passive ‘‘static’’ mode localization a
spatial motion confinement in periodic and nonperiodic coup
oscillators have been studied extensively in the literature~@2–9#!.
In these studies, linear and nonlinear standing wave motions w
analyzed in ordered and disordered periodic coupled oscillat
and the existence of spatially localized free and forced stand
waves was rigorously proven by means of theoretical, numer
and experimental techniques. The standing wave localization
sidered in these previous works can be classified as ‘‘static’’ si
it does not involve any controlled spatial transfer~transition! of
energy through the system; indeed linear or nonlinear mode lo
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ization can be realized through appropriate selection of the in
conditions of the system, and does not involve any spatial ‘‘flow
of energy through the system.

Nonlinear transfer of energy between nonlinear modes in in
nal resonance has also been studied extensively~cf. @10#!. In ad-
dition, as recently shown by Nayfeh and co-workers, under cer
conditions energy transfer from high to low-frequency modes o
weakly nonlinear structure can also occur~@11#!. However, these
nonlinear energy exchanges are solely due to modal interact
and do not necessarily involve controlled, one-way spatial tran
of energy through the system.

To the authors’ best knowledge the only previous study of
nonlinear energy pumping phenomenon is the one by Gendel
@12#. In that work a system of two weakly coupled oscillators,
linear and an essentially~nonlinearizable! nonlinear one, was con
sidered. Pumping of energy was demonstrated numerically
showing that, under certain conditions, energy initially impart
in the linear oscillator transfers to the essentially nonlinear o
even though this later oscillator is not directly excited. Howev
no rigorous analysis and explanation of this phenomenon is g
in that work.

In Part I of this work we present numerical evidence of ene
pumping in two and three-degrees-of-freedom coupled oscilla
with essential nonlinearities and weak viscous damping. We t
focus ~for simplicity! in the two-degrees-of-freedom case, a
analyze systematically the bifurcation structure of the free non
ear periodic orbits of the underlying Hamiltonian system with
damping. We show that the occurrence~or lack of! energy pump-
ing can be explained by considering the 1-1 and higher or
resonant orbits of the Hamiltonian system. A direct analysis of
energy pumping phenomenon is carried in Part II by transform
the damped equations of motion using the action-angle varia
of the underlying Hamiltonian system. We show that ener
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pumping is a resonance capture phenomenon on a 1-1 reso
manifold, and construct analytical approximations of ene
pumping.

2 Nonlinear Energy Pumping: Numerical Evidence
Consider the following two-degrees-of-freedom system co

posed of two weakly coupled and weakly damped oscillators:

ÿ11«l ẏ11Cy1
31«~y12y2!50

(1)
ÿ21«l ẏ21v2

2y21«~y22y1!50

Weak coupling is assured by requiring that«!1, and all other
variables are assumed to beO(1) quantities; dots denote differ
entiation with respect to the independent variablet ~time!. For
«50 the system decomposes into two uncoupled nonlinear
linear oscillators, labeled ‘‘Oscillators 1 and 2,’’ respectively. W
note that oscillator 1 is essentially nonlinear~nonlinearizable!.

In Fig. 1 we depict the transient responses of the two oscilla
for l50.5, v2

250.9, C55.0, «50.1, and initial conditionsy1(0)
5y2(0)50, ẏ1(0)50, ẏ2(0)5A2h, whereh ~the energy of the
system att501! varies; these initial conditions correspond
impulsive excitation of oscillator 2 att50. For h50.5 ~cf. Fig.
1~a!! both oscillators perform damped free oscillations and
energy pumping occurs, since most energy is stored in the dire
excited oscillator 2. By increasing the initial energy level toh
50.8 and 1.1.25~cf. Figs. 1~b,c!!, it is observed that energy trans
fer from the directly excited oscillator 2 to the unexcited oscilla
1 takes place; indeed, after an initial transient state most of
vibrational energy is irreversibly transferred~‘‘pumped’’! to os-
cillator 1. By further increasing the initial energy level the ener
pumping phenomenon becomes less pronounced. This nume
simulation indicates that, for fixed system parameter values,en-
ergy pumping in the weakly coupled system takes place, abo
specific value of the initial energy level (strength of the exc
tion).

Similar results are obtained for the three-degrees-of-freed
system governed by

ÿ11«l ẏ11Cy1
31«~y12y2!50

ÿ21«l ẏ21v2
2y21«~y22y1!1d~y22y3!50 (2)

ÿ31«l ẏ31v2
2y31d~y32y2!50

representing two strongly coupled linear oscillators that
weakly attached to an essentially nonlinear oscillator. In Fig. 2
depict the transient response of this system forl50.5, v2

250.9,
C55.0, d51.0, «50.1, and zero initial conditions exceptẏ3(0)
Þ0. Whereas for low excitation no energy pumping to the no
linear oscillator occurs~cf. Fig. 2~a!!, as ẏ3(0) increases energy
pumping takes place~cf. Figs. 2~b,c!!. Hence the nonlinear energ
pumping phenomenon can also be realized in multi-degree
freedom systems.

We now focus exclusively in the two-degrees-of-freedom s
tem ~1!. Considering the transient responses depicted in Fig. 1
note that, when energy pumping occurs the motion can be div
into two phases: In the initial phase energy is rigorously pum
from oscillator 2 to oscillator 1 in aone-way (irreversible)trans-
fer, until oscillator 1 reaches a certain amplitude of oscillation;
the second phase of the motion, both oscillators perform deca
oscillations due to damping dissipation with oscillator 1 retain
most of the vibrational energy. Moreover, during the initial ener
pumping phase~defined approximately for 0,t,40 in Fig. 1~b!,
and 0,t,60 for Fig. 1~c!, the motion of oscillator 1 is compose
of a ‘‘fast’’ oscillation with frequency nearly identical to the natu
ral frequency of oscillator 2, and a ‘‘slow’’ envelope oscillatio
This strongly suggests that a 1-1internal resonancebetween os-
cillators 1 and 2 plays an important role in the energy pump
phase, although this still does not explain the one way ene
pumping from oscillator 2 to oscillator 1.
Journal of Applied Mechanics
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Motivated by these observations we now proceed to exam
the periodic orbits of the underlying Hamiltonian system by elim
nating damping from Eqs.~1!. Since system~1! is weakly
damped, one expects that, at least at the initial stages of the
tion, the dynamics will be greatly influenced by the dynamics
the corresponding~undamped! Hamiltonian system. In turn, the
undamped dynamics are dominated by periodic orbits. As a re
we expect that the topological structure of the periodic orbits~and
their bifurcations! of the Hamiltonian system, will play a domi
nant role in the energy pumping phenomenon.

Fig. 1 Numerical transient responses y 1„t … and y 2„t … of sys-
tem „1… for „a… hÄ0.5, „b… hÄ0.8, „c… hÄ1.125; oscillator 1,

oscillator 2
JANUARY 2001, Vol. 68 Õ 35
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3 Periodic Orbits of the Underlying Hamiltonian Sys-
tem

The underlying Hamiltonian two-degrees-of-freedom system
obtained by settingl50 in ~1!. At a fixed level of energy~Hamil-
tonian! we employ the reduction method outlined in@13# to reduce
the undamped system~1! to a single-degree-of-freedom nonaut
nomous oscillator with periodic forcing. This is a standard red
tion process by which an (n11)-degree-of-freedom Hamiltonia
system with symmetry~symmetry of time translations! is reduced
to an n-degree-of-freedom nonautonomous system with no s
metry.

Fig. 2 Numerical transient response of the three-degrees-of-
freedom system for „a… ẏ 3„0…Ä2.0, „b… ẏ 3„0…Ä3.0, and „c…
ẏ 3„0…Ä4.0; oscillator 1, " " " " oscillator 2, oscilla-
tor 3
36 Õ Vol. 68, JANUARY 2001
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Introducing the action-angle variables (I 2 ,u2)P(R13S1) for
oscillator 2 defined by the relationsy25A2I 2 /v2 sinu2, v2[ ẏ2
5A2I 2v2 cosu2, the Hamiltonian of the undamped system is e
pressed as

H«5F~y1 ,v1!1G~ I 2!1
«

2
H1~y1 ,v1 ,u2 ,I 2! (3)

where

F~y1 ,v1!5~v1
2/2!1~Cy1

4/4!, G~ I 2!5v2I 2 ,

H1~y1 ,v1 ,u2 ,I 2!5~y12A2I 2 /v2 sinu2!2.

The equations of motion can then be placed in the following for

ẏ15
]F

]v1
1

«

2

]H1

]v1
, v̇152

]F

]y1
2

«

2

]H1

]y1
,

u̇25v21
«

2

]H1

]I 2
, İ 252

«

2

]H1

]u2
(4)

wherev15 ẏ1 . By fixing the Hamiltonian~total energy! to a con-
stant levelh, we can express the actionI 2 in terms of the other
variables of the system as follows:

H«5F~y1 ,v1!1G~ I 2!1
«

2
H1~y1 ,v1 ,u2 ,I 2!

5h⇒I 25L«~y1 ,v1 ,u2 ,h! (5)

whereL« is a complicated expression. As a reviewer pointed o
the inversion~5! is only possible if the system is nonsingular, i.e
if the condition]H«/]I 2Þ0 is satisfied; clearly, this is the case
our problem. Taking into account~5!, eliminating the time vari-
able from~4!, and combining the resulting first-order expressio
into a single second-order one we obtain the reduced oscillat

y191~C/v2
2!y1

35«
1

2v2
4 H 22v2

2y114Cy1
3 sin2 u2

1
v2~4h25Cy1

4!sinu2

A2h2
Cy1

4

2
2v2

2y18
2

12v2
2y18F 2sin 2u2

1
v2y1 cosu2

A2h2
Cy1

4

2
2v2

2y18
2G J 1O~«2!

[«g~y1 ,y18 ,u2!1O~«2!. (6)

We note that the derived expression is approximate since it
glectsO(«2) terms; this approximation was imposed by the im
possibility of finding an exact expression forL« in ~5!. As a result,
the following analysis is valid only for undamped systems~1!
with sufficiently weak coupling. In~6!, y15y1(u2), and primes
denote differentiation with respect tou2 . In addition, the ‘‘forcing
term’’ on the right-hand side is 2p–periodic in u2 . This com-
pletes the reduction process.

Employing the previous analysis, the problem of computing
periodic orbits of the undamped system~1! is equivalent to the
problem of computing the periodic solutions of the reduced s
tem ~6!. This equivalence holds since a periodic motion iny1 and
v1 under a periodic change inu2 leads to a periodic motion forI 2
as well. Since the reduced system is essentially nonlinear we
sort to an analytical/numerical technique to compute the perio
orbits and their bifurcations. In particular, we introduce a no
mooth transformation of variables to transform the problem t
Transactions of the ASME
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set of nonlinear boundary value problems over finite doma
This technique was first developed by Pilipchuck@14,15# and then
applied to smooth and nonsmooth problems in dynamics in a
ries of works~@16,17#!. We refer the reader to these works f
more technical details of the method.

We now compute the periodic solutions of~6! with period T
54a ~yet undetermined!. We express the solution in the follow
ing form:

y1~u2!5X~t~f!!1e~f!Y~t~f!!, f5u2 /a (7)

where the new independent variablest~f! ande(f) are bounded
nonsmooth functions of their argumentf:

t~f!5
2

p
arcsinFsinS pf

2 D G , e~f!5t8~f!. (8)

The derivative in~8! should be understood in the context of th
theory of distributions. Both nonsmooth variables are periodic
f with ~normalized! period equal to 4. We note that by~7! the
solution is expressed in terms of two components.X depends only
on t and is termed theR-componentof the solution.Y also de-
pends solely ont and is multiplied by e; it is termed the
I-componentof the solution. Interestingly, expression~7! has a
phenomenological resemblance to complex variable represe
tion with e playing the role of the imaginary constantj ~note that
e252 j 251!.

Employing the transformation~7! we express the derivative
and powers ofy1 in ~6! in terms ofX andY, and set separately th
R andI-components of the resulting expression equal to zero.
then obtain the following two subproblems governing theR and
I-components of the solution:

Subproblem 1.

Y91~Ca2/v2
2!Y35«a2g~y15Y,y185Y8/a,u25mpt!1O~«2!,

a5mp, X50 Y~61!50, m51,2,3, . . . . (9)

Subproblem 2.

X91~Ca2/v2
2!X35«a2gS y15X,y185X8/a,u2

5
~2n21!pt

2 D1O~«2!,

a5
~2n21!p

2
, Y50 X8~61!50, n51,2,3, . . . .

(10)

We note that the above subproblems were obtained by se
either theR or I-component of the solution equal to zero. The
the solutions of each subproblem provide a distinct class of s
harmonic motions of the problem. In general, the problem
tained by applying the previous method leads to a coupled sys
of equations inX andY, however, this case will not be considere
here.

Since no analytical solution exists for these nonlinear bound
value problems we need to resort to a numerical method to s
them. Before we perform this numerical computation, howev
we make the following remarks concerning the method of no
mooth transformations. The boundary conditions in~9! and ~10!
impose smoothness on the transformed derivatives ofy1 ; these
boundary conditions define the domain of the solutions of
nonlinear boundary value problemstP@21,1#. In addition, the
quarter-period of the solution,a, for each subproblem is allowed
countable infinity of values. Taking into account that the period
the periodic solution isT54a, and that the nonhomogeneou
term in ~6! is 2p–periodic inu2 , we conclude thatSubproblem 1
computes the2m:1, m51,2,3, . . . subharmonic orbits of~6!,
whereas Subproblem 2 computes the(2n21):1, n51,2,3, . . .
subharmonic orbits. A subharmonic orbit of orderp:1 is a peri-
Journal of Applied Mechanics
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odic orbit with period equal to 2pp, i.e.,p-times the period of the
nonhomogeneous termg. Finally, we note that the periodic solu
tion y1(t) is obtained from the solutions of the nonlinear boun
ary value problems either asy1(u2)5e(u2 /a)Y(t(u2 /a)) ~Sub-
problem 1!, or as y1(u2)5X(t(u2 /a)) ~Subproblem 2!, where
u25v2t1u201O(«). Now, the nonlinear boundary value prob
lems above provide the solution only in the normalized ha
periodtP@21,1#. To extend the result over a full normalized p
riod ~equal to 4! we need to add the component of the solution
the interval tP@1,3#; to perform this we take into account th
symmetry properties of the nonsmooth variablest ande, and add
either the antisymmetric image of the solution about the po
(Y,t)5(0,1) ~for Subproblem 1, cf. Fig. 3~a!!, or the mirror im-
age of the solution about the linet51 ~for Subproblem 2, cf. Fig.
3~b!!.

The nonlinear boundary value problems~9! and ~10! were
solved using a single-point numerical shooting method. In Figs
and 5 we depict the leading low-order subharmonic orbits a
their bifurcations for the undamped two-degrees-of-freedom s
tem with v2

250.9, C55.0, «50.1 and varying values of the tota
energyh. In these figures we also present one-period represe
tions of a number of subharmonic orbits. In the bifurcation plot
Fig. 4 we depict the values ofY8(21) at the subharmonic orbits
as functions ofh ~recall that the solution domain of the abov
nonlinear boundary value problems is21<t<1!; in physical
terms,each point denotes the initial slope ay18 of the subharmonic
orbit, corresponding to zero initial displacement, y150. In Fig. 5
we plot X(21) as function ofh; in physical terms,each point
denotes the initial displacement y1 of the subharmonic orbit, cor-
responding zero initial slope, y1850. These plots depict only the
responses of the unexcited oscillator 1; the corresponding
sponses of oscillator 2 are computed using relation~5! derived in

Fig. 3 Construction of the solution y 1 over an entire normal-
ized period „equal to 4 … from the half-normalized period solu-
tions „a… eY„t…, and „b… X„t…
JANUARY 2001, Vol. 68 Õ 37
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Fig. 4 Leading 2 m:1 subharmonic orbits as functions of h : Y8„À1… for mÄ1, Y8„À1… for m
Ä2, Y8„À1… for mÄ3
t

a

e
s

m

a

h

d to
an

s of

rgy
its

il-

ble
-
ns

ear

-
he
ious

urs

l to

re
ly
the course of the reduction process, and the relationsy2
5A2I 2 /v2 sinu2, u25v2t1u201O(«). Finally, we emphasize
that, since the reduced system~6! neglectsO(«2) terms, the re-
sults presented in Figs. 4 and 5 are approximate and valid only
sufficiently small values of«. Of special interest are the 1:1 sub
harmonic orbits labeled A-D in Fig. 5. These orbits dominate
dynamics as shown below.

The domain of attraction and the stability of the 1:1 subh
monic orbits were determined by numerical Poincare´ maps. These
were constructed by considering the original undamped Eqs.~1!.
First, the four-dimensional phase space of the solutions of~1! was
reduced to a three-dimensional isoenergetic manifold: by fixing
the total energy to a constant level,H«(y1 ,ẏ1 ,y2 ,ẏ2)5h; : was
then ‘‘cut’’ by the Poincare´ section S5$(y1 ,ẏ1 ,y2)[:/y2

50,ẏ2.0%. The Poincare´ mapP« was defined as,P«:S→S, i.e.,
as a mapping of points onS to their images under the flow of th
dynamical system onS, under orientation preserving restriction
Stable periodic orbits of~1! appear as centers in the Poincare´ map,
whereas, unstable periodic orbits appear as saddle points.

In Fig. 6 we depict the Poincare´ maps of the undamped syste
~1! with C55.0, «50.1 and varying values of the energyh. The
1:1 subharmonic orbits labeled A-D correspond to the ones of
approximate bifurcation plot of Fig. 5. A common feature of
these plots is a large region of regular motion~smooth quasi-
periodic orbits! in the upper regions of the plots, surrounding t
stable 1:1 subharmonic orbit A. When damping is added to
68, JANUARY 2001
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system, the large regular region surrounding orbit A is expecte
become a large region of attraction, with that orbit becoming
attractor. Additional stable and unstable 1:1 subharmonic orbit
the system are indicated in the Poincare´ maps, confirming the
approximate asymptotic results of Fig. 5. At the small ene
level h50.05 there are two stable subharmonic orbits; both orb
correspond to localized motions, with orbit A localizing in osc
lator 1 and orbit B in oscillator 2. At higher values ofh the
low-energy bifurcation of 1:1 subharmonic orbits~predicted in the
plot of Fig. 5! has occurred and there exist four orbits, three sta
and one unstable. Note that ash increases orbit A gradually delo
calizes from oscillator 1 and localizes in oscillator 2. The regio
of chaotic motion~the ‘‘stochastic sea’’! in the maps is a well-
documented feature in the dynamics of such strongly nonlin
systems.

The bifurcation diagrams and Poincare´ maps of the 1:1 subhar
monic orbits lead to a preliminary qualitative explanation of t
energy pumping phenomenon, which, as shown in the prev
section, occurs only above a certain level of the initial energyh.
When energy pumping occurs, an initial transfer of energy occ
from the directly excited~linear! oscillator 2 to the unexcited
~nonlinear! oscillator 1; moreover, the ‘‘fast’’ oscillation during
this initial phase of the motion has a frequency nearly identica
the linearized natural frequencyv2 . Hence, it is logical to con-
clude that the 1:1 subharmonic orbit A existing over the enti
range of h and having a large domain of attraction, is main
Transactions of the ASME
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Fig. 5 Leading „2nÀ1…:1 subharmonic orbits as functions of h : X„À1… for nÄ1, ÀX„À1… for nÄ2,
X„À1… for nÄ3; ÃÃÃÃ unstable 1:1 subharmonic orbits
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responsible for the energy pumping phenomenon. However, this
family of orbits can not be directly excited att50 since it cannot
satisfy pointwise the initial condition ((y1(0),ẏ(0))5(0,0) ~this
is the initial state of oscillator 1 when the energy pumping p
nomenon is initiated!; as a result, atransient ‘‘bridging’’ orbit
must be initially excited, satisfying zero initial conditions an
ultimately ‘‘connecting’’ with the 1:1 subharmonic orbit A. Unde
these conditions energy pumping occurs. Noting that the am
tude of the 1:1 orbit has a lower bound of approximately 0
~cf. Fig. 5! and considering the initial transients of the numeric
simulations of Fig. 1, we conjecture that if the initial transie
al of Applied Mechanics
e-

d
r
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transients of oscillator 1 can not attain sufficiently large amp
tudes, they cannot act as ‘‘bridging’’ orbits to excite the 1
subharmonic orbit A and no energy pumping can take pla
Thus, for sufficiently low values ofh no energy pumping is pos
sible. For higher values ofh the initial transients for oscillator
1 attain sufficiently large amplitudes to excite the 1:1 orbit a
energy pumping can occur. This conjecture explains the l
of energy pumping forh50.5 in the simulations of Fig. 1.
Clearly, the previous arguments form merely a conjecture, but
more rigorous analysis in Part II of this work~@1#! validates these
arguments.
JANUARY 2001, Vol. 68 Õ 39
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Fig. 6 Poincare´ maps of the dynamics of the undamped system „1… at varying
energy levels for v2

2Ä0.9, CÄ5.0, «Ä0.1: „a… hÄ0.05, „b… hÄ0.2, „c… hÄ0.8, „d… h
Ä2.0
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4 Analytical Approximations
As a final note, we now present an analytical technique to

proximate the transient responses of the Hamiltonian system
contrast to most standard techniques which are based on th
sumption of weak nonlinearity, the method used here deals w
the strong~nonlinearizable! nonlinearity of oscillator 1. An exten-
sion of this technique for the damped system in Part II of t
work ~@1#! will enable us to analytically approximate the transie
responses during the initial phase of energy pumping of Fig.

To this end, we express system~1! in the following form:

ÿ11«y11Cy1
32«y250

(11)
ÿ21v2y22«y150

wherev25v2
21«. A transformation to complex variables is no

introduced,

c15 ẏ11 j vy1 , c25 ẏ21 j vy2 , (12)

and ~12! are rewritten as

ċ12
j v

2
~c11c1* !2

j «

2v
~c12c1* !1

jC

8v3 ~c12c1* !3

1
j «

2v
~c22c2* !50

(13)

ċ22 j vc21
j «

2v
~c12c1* !50

where the star denotes complex conjugate.
An approximate solution of~13! is sought, based on the as

sumption of fast oscillations at frequencyv:

c15w1ej vt, c25w2ej vt. (14)

Relations~14! indicate the presence of 1:1 internal resonance
the fast dynamics of oscillators 1 and 2. Substituting~14! into
ARY 2001
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~13!, and averaging over the fast periodic termsej vt we obtain the
following set of averaged equations governing the~complex! am-
plitudesw i , i 51,2:

ẇ11
j

2 S v2
«

v Dw12
3 jC

8v3 uw1u2w11
j «

2v
w250

(15)

ẇ21
j «

2v
w150.

Interestingly, in contrast to~11!, the transformed system~15! is
completely integrable, with the following two first integrals o
motion:

uw1u21uw2u25N2,

j v

2
uw1u22

3 jC

16v3 uw1u41
j «

2v
~w1w2* 1w1* w2!5H. (16)

Employing these results, the complex amplitudes are expresse

w15N sinuej d1, w25N cosuej d2 . (17)

Substituting~17! into ~15!, we obtain the final set of equations o
the 2-Torus governing the angle-variablesu andd5d12d2 :

ḋ1
v

2
2

3CN

8v3 sin2 u1
«

v
cot 2u cosd50

(18)

u̇1
«

2v
sind50.

We note that the orbits of~18! can be analytically computed in
terms of pseudo-elliptic quadratures by employing the change
variables~17! in ~16!, and then integrating the second of Eqs.~18!
by quadratures.

By numerically integrating~18! we can study transient~nonpe-
riodic! orbits in the neighborhoods of the 1:1 subharmonic orb
of the underlying Hamiltonian system. In Fig. 7 we present
phase plots of~18! for varying values of the energy-like first in
tegralN, confirming the bifurcations of the 1:1 subharmonic orb
depicted in the analytical approximations of Fig. 5 and the n
merical results of Fig. 6.
Transactions of the ASME
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5 Discussion
We presented numerical evidence of energy pumping in n

linear mechanical oscillators. The systems considered herein
composed of weakly coupled, linear, and essentially nonlin
~nonlinearizable! parts. In such systems it is possible to indu
one-way~irreversible! ‘‘channeling’’ of vibrational energy from
the linear to the nonlinear part, provided that the imparted ene

Fig. 7 Phase plots of the system of Eqs. „18… for v2
2Ä0.9, C

Ä5.0, «Ä0.1, and varying values of the first integral of motion
N: „a… NÄ0.4, „b… NÄ0.8, „c… NÄ1.9
Journal of Applied Mechanics
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is above a critical level. Hence, energy can be ‘‘pumped’’ to
predetermined part of the system~the nonlinear oscillator!, which,
in essence acts as a passive nonlinear sink. Clearly, no such
nomenon is possible in linear systems.

A 1:1 stable subharmonic orbit of the underlying Hamiltoni
system~obtained by setting damping equal to zero! was conjec-
tured to be responsible for the energy pumping phenomenon.
conjecture that the reason for lack of energy pumping at low
ergies is due to the fact that the 1:1 subharmonic orbit can no
excited unless the energy of the system is above a critical le
The energy pumping phenomenon will be further studied in
companion paper~@1#! where it will be shown that it is caused b
transientresonance captureon a 1:1 resonance manifold of th
system.

We remark that the energy pumping phenomenon, which in
work was purely passive, could be enhanced using active con
Utilizing this phenomenon one can introduce passive or ac
nonlinear sinks in predominantly linear extended periodic str
tures where externally imparted energy is directed and loc
eliminated. This can lead to enhanced vibration and shock is
tion designs of extended mechanical systems.
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Energy Pumping in Nonlinear
Mechanical Oscillators: Part
II—Resonance Capture
We study energy pumping in an impulsively excited, two-degrees-of-freedom da
system with essential (nonlinearizable) nonlinearities by means of two analytical
niques. First, we transform the equations of motion using the action-angle variables o
underlying Hamiltonian system and bring them into the form where two-frequency a
aging can be applied. We then show that energy pumping is due to resonance cap
the 1:1 resonance manifold of the system, and perform a perturbation analysis i
O~A«! neighborhood of this manifold in order to study the attracting region respons
for the resonance capture. The second method is based on the assumption of 1:1 in
resonance in the fast dynamics of the system, and utilizes complexification and ave
to develop analytical approximations to the nonlinear transient responses of the syst
the energy pumping regime. The results compare favorably to numerical simulations
practical implications of the energy pumping phenomenon are discussed.
@DOI: 10.1115/1.1345525#
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1 Introduction
In this paper we extend the results presented in@1# on energy

pumping in weakly coupled nonlinear oscillators. The effects
damping are added to the analysis, and it is shown that en
pumping is caused by resonance capture on a 1:1 resonance
fold. The phenomenon of resonance capture occurs in nonco
vative oscillators and leads to transient capture of trajectories
domain of attraction on the resonance manifold.

Resonance capture, as well as single and multifrequency a
aging techniques for analyzing nonlinear oscillators have b
studied in previous publications~for example,@2–4#!. General
theorems on resonance capture in two-frequency systems~such as
the ones considered herein! were given in the aforementioned re
erences and in@5,6#. In @7–9# resonance capture in perturbed tw
dimensional Hamiltonians is studied by perturbation techniqu
Additional asymptotic techniques for analyzing transient reson
layers~passage through resonance! are given in@10–16#.

In this work we study energy pumping by employing two an
lytical techniques. We note that the two-degrees-of-freedom
tem considered herein isstrongly nonlinearandweakly damped;
as a result, standard perturbation methods that are valid
weakly nonlinear systems are not applicable in this case. First
transform the strongly nonlinear, weakly damped equations
motion into a system of four first-order equations in (R13R1

3S13S1) using the action-angle variables of the underlyi
Hamiltonian system. The resulting equations are in a form a
nable to multifrequency averaging, and resonance capture a
sis. We then show that the transformed system satisfies the
ditions for resonance capture on a 1:1 resonance manifold. In
second methodology followed in this work we extend the pert
bation method based on complexification of the equations of
tion developed in@1# for the weakly damped case, and provid
analytic reconstructions of the transient responses of the sy
during energy pumping. We conclude with a discussion of
practical implications of the results of this work.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
29, 1999; final revision, May 2, 2000. Associate Editor: N. C. Perkins. Discussio
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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2 1:1 Resonance Capture Analysis
We consider the following two-degrees-of-freedom syst

composed of two weakly coupled, weakly damped oscillators

ÿ11«l ẏ11Cy1
31«~y12y2!50

(1)

ÿ21«l ẏ21v2
2y21«~y22y1!50.

The linear oscillator is labeled ‘‘oscillator 2,’’ whereas th
~strongly! nonlinear one ‘‘oscillator 1.’’ This system was numer
cally integrated in@1# with initial conditions y1(0)5y2(0)50,
ẏ1(0)50, ẏ2(0)5A2h, corresponding to impulsive loading of os
cillator 2. It was shown that for sufficiently high values ofh
~impulse! energy pumping occurs: Vibrational energy ‘‘flows’’ t
the unexcited oscillator 1 in an irreversible way. After ener
pumping, the motion of the two oscillators is dissipated due
damping.

To analyze the energy pumping phenomenon in the stron
nonlinear system~1! we first transform the equations of motio
utilizing the action-angle variables of the underlying Hamiltoni
system~corresponding tol50!. These are given by@17#:

y15LI 1
1/3cnF2K~1/2!u1

p
,
1

2G
v1[ ẏ152LI 1

1/3V1~ I 1!
2K~1/2!

p

3snF2K~1/2!u1

p
,
1

2GdnF2K~1/2!u1

p
,
1

2G
(2)

y25A2I 2

v2
sinu2

v2[ ẏ25A2I 2v2 cosu2

whereV1(I 1)5JI 1
1/3 is the instantaneous frequency of free osc

lation of oscillator 1,K(1/2) is the complete elliptic integral of the
first kind, and the variablesL andJ are defined as

L5S 1

4CD 1/6S 3p

K~1/2! D
1/3

, J5S 3p4C

8K4~1/2! D
1/3

.

t.
on
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The action angle variables (I 1 ,I 2 ,u1 ,u2)P(R13R13T2),
~whereT2 is the 2-torus! can be regarded as nonlinear polar c
ordinates for the underlying Hamiltonian system.

Introducing the transformations (y1 ,ẏ1)→(I 1 ,u1) and
(y2 ,ẏ2)→(I 2 ,u2) into Eqs.~1!, and expressing them as a set
four first-order equations, we obtain

İ 15«
3I 1

1/3p

2K~1/2!LJ@cn412sn2dn2#

3H 2lLI 1
1/3V1~ I 1!

2K~1/2!

p
sn2dn21LI 1

1/3cnsndn

2A2I 2

v2
sinu2sndnJ [«F̃1~ I 1 ,I 2 ,u1 ,u2!

İ 252«H 2lI 2 cos2 u21A2I 2

v2
cosu2FA2I 2

v2
sinu22LI 1

1/3cnG J
[«F̃2~ I 1 ,I 2 ,u1 ,u2!

(3)

u̇15V1~ I 1!1«FJLI 1
2/3S 2K~1/2!

p D 2

~cn412sn2dn2!G21

3H 2lLI 1
1/3V1~ I 1!

2K~1/2!

p
cnsndn1LI 1

1/3cn2

2A2I 2

v2
sinu2cnJ [V1~ I 1!1«G̃1~ I 1 ,I 2 ,u1 ,u2!

u̇25v21«
sinu2

A2I 2v2
H lA2I 2v2 cosu21A2I 2

v2
sinu22LI 1

1/3cnJ
[v21«G̃2~ I 1 ,I 2 ,u1 ,u2!.

In the expressions above, the arguments of all elliptic functi
are given by@2K(1/2)u1 /p,1/2#. We note that by construction
the expressions on the right sides of expressions~3! are 2p–
periodic in the angle variablesu1 andu2 , and the action variables
are positive real numbers.

Equations~3! represent a two-frequency dynamical system
(R13R13T2), and are in a form that is directly amenable
two-frequency averaging~@3#!. By applying straightforward aver
aging we obtain the following simplified system:

J̇15«F̂1~J1 ,J2!52«lJ1
~ two-frequency averaged system!

J̇25«F̂2~J1 ,J2!52«lJ2
(4)

where F̂p(J1 ,J2)[1/4p2*0
2p*0

2pF̃p(J1 ,J2 ,u1 ,u2)du1du2 , and
Jp.0, p51,2. The conditions under which the dynamics of t
averaged system~4! accurately describes the dynamics of the f
system~3! has been addressed in previous works~for example,
@2,5,9#!. Arnold’s theorem~@2#! answers this question.

Theorem „†2‡…. If system~3! satisfies the following condition
A,

d

dt S V~ I 1!

v2
DÞ0 ~along trajectories of the system!

then the difference between the slow motion (I 1(t),I 2(t)) of the
perturbed system~3! and (J1(t),J2(t)) of the averaged system
~4!, remains small over time~1/«!:

i I ~ t !2J~ t !i<kA«, if I ~0!5J~0!, 0<t<1/«

This result is optimal.
Additional theorems on the relation between the trajectories

the full and averaged systems have been proven by Neishtad
Arnold in the references cited. Condition A of the Theorem p
Journal of Applied Mechanics
o-

f

ns

in
o

e
ll

of
and
e-

cludes any trajectory of~3! from being captured on aresonance
manifold. For system~3!, the conditions for the existence of a
(m:n) resonance manifold are given by

mV1~ I 1!2nv250
(5)

E
0

2pE
0

2p

F̃p~J1 ,J2 ,u1 ,u2!exp@2 j ~mu12nu2!#du1du2Þ0,

p51,2

wherem,n are integers. A basic feature of two-frequency system
such as~3!, is the possibilityof resonance captureon a resonance
manifold: This is a dynamic phenomenon where an orbit g
‘‘trapped’’ by an attracting region of the system in anO(A«)
neighborhood~boundary layer! of the resonance manifold. Afte
the trajectory gets ‘‘captured’’ on the resonance manifold, av
aging is not justified anymore since the time average is not c
to the space average over the entire 2-Torus (u1 ,u2)PT2; hence
condition A of the Theorem.

From ~4! it directly follows that in the absence of resonan
capture one expects the action variables to decay~approximately!
exponentially in time. In Fig. 1 we depict the numerical tim
decays of the action variables for system~1! corresponding to
parametersl50.5,v2

250.9,C55.0,«50.1, and initial conditions
y1(0)5y2(0)50, ẏ1(0)50, ẏ2(0)5A2h with varying h ~the en-
ergy of the system att501! varies; these responses correspo
to the transient responses of the physical coordinates depicte
Fig. 1 in Part I of this work~@1#!. For h50.5 no energy pumping
occurs and the actions decay nearly exponentially to zero indi
ing the absence of resonance capture. At the higher energy va
h50.8 and 1.125 energy pumping from oscillator 2 to oscillato
occurs, which is indicated by the fact that as time progressesI 1(t)
surpassesI 2(t). Moreover, at certain time intervals there is
‘‘flattening’’ of the plot of I 2(t), accompanied with oscillatory
behavior ofI 1(t); these variations of the action plots from exp
nential decay indicate the occurrence of resonance capture at
higher energy values, a phenomenon which can be directly a
ciated to energy pumping. In addition, examination of the tra
sient responsey1(t) during energy pumping indicates the pre
ence of fast oscillations with frequency approximately equal tov2
~@1#!. This observation, coupled with the previous findings su
gests thatthe energy pumping phenomenon in~1! is associated
with resonance capture in a neighborhood of the 1:1 resona
manifold.

Motivated by the above discussion, we analyze in detail p
sible resonance capture in~1! associated with the~1:1! resonance
manifold ~it is a straightforward task to show that conditions~5!
hold for m5n51!,

V1~ I 1!5v2⇒I 15~v2 /J!3[I 1
~121! (6)

and restrict the analysis in anO(A«) neighborhood of this mani-
fold. To study the dynamics in the boundary layer close to t
manifold we introduce the~slow! combination anglec5u1
2u2 , and introduce the change of angles (u1 ,u2)→(c,u2) and
the following coordinate transformation in~3!:

I 15I 1
~121!1A«j, I 25h. (7)

Transforming the last of Eqs.~3! using the previous coordinat
changes, we express the fast angleu2 in terms of the independen
time variable, as follows:

u̇25v21«G2~ I 1
~121! ,h,c,u2!1O~«3/2!⇒t5~u2 /v2!1O~«!.

(8)

Employing ~8! we establishu2 as the independent variable in th
remaining three Eqs.~3!, and express them as
JANUARY 2001, Vol. 68 Õ 43
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j85A«v2
21F1~ I 1

~121! ,h,c,u2!1«v2
21

]F1

]I 1
~ I 1

~121! ,h,c,u2!

1O~«3/2!

h85«v2
21F1~ I 1

~121! ,h,c,u2!1O~«3/2! (9)

c85A«V18~ I 1
~121!!v2

21j1«v2
21FV19~ I 1

~121!!
j2

2

1G1~ I 1
~121! ,h,c,u2!2G2~ I 1

~121! ,h,c,u2!G1O~«3/2!

where primes denote differentiation with respect tou2 , and the
following notation is adopted:

F̃p~ I 1 ,I 25h,u15c1u2 ,u2![Fp~ I 1 ,h,c,u2!,

Fig. 1 Transient responses I1„t … and I2„t … of system „1… for, „a…
hÄ0.5, „b… hÄ0.8, „c… hÄ1.125; oscillator 1, oscil-
lator 2
44 Õ Vol. 68, JANUARY 2001
G̃p~ I 1 ,I 25h,u15c1u2 ,u2![Gp~ I 1 ,h,c,u2!, p51,2.

We note that, in contrast to~3!, ~9! is a local model since it is
valid only in anO(A«) neighborhood of the~1:1! resonance mani-
fold. Since the only remaining fast variable (u2) is used as inde-
pendent variable, all dependent variables in~9! are slow varying,
and, as a result, we can apply asymptotic techniques from
theory of nonlinear dynamics~such as, averaging or multiple
scales! to study the flow of the system close to the resonan
manifold.

To this end, we replace the independent variable in~9! by two
‘‘slow’’ and ‘‘fast’’ variables, z5A«u2 , d5u2 , respectively. In
addition, we express the dependent variables in series,

j5j0~d,z!1A«j1~d,z!1«j2~d,z!1O~«3/2!

h5h0~d,z!1A«h1~d,z!1«h2~d,z!1O~«3/2! (10)

c5c0~d,z!1A«c1~d,z!1«c2~d,z!1O~«3/2!,

and substitute into~9!. Balancing the coefficients of the sam
order of « we obtain a series of subproblems governing the
proximations of different orders in~10!.

O„«0
… Approximations. The zeroth-order approximation

can be trivially solved:

j0d50⇒j0~d,z!5A0~z!

h0d50⇒h0~d,z!5B0~z! (11)

c0d50⇒c0~d,z!5C0~z!

where the short-hand notation for partial differentiatio
](d)/]d[(d)d , is adopted, and thez-dependent functions are
determined at the next order of approximation.

O„«1Õ2
… Approximations. The subproblems governing th

first-order approximations are

j1d52j0z1v2
21F1~ I 1

~121! ,h0 ,c0 ,d!

h1d52h0z (12)

c1d52c0z1v2
21V18~ I 1

~121!!j0 .

Substituting~11! into ~12!, and eliminating secular terms~i.e.,
right-hand side terms depending only onz!, we obtain the follow-
ing solvability relations that govern the unknown functions
~11!:

A08~z!1~2pv2!21E
0

2p

F1~ I 1
~121! ,B0~z!,C0~z!,d!dd50

B08~z!50⇒B0~z!5B0 (13)

C08~z!2v2
21V18~ I 1

~121!!A0~z!50.

Performing explicitly the integration in the first of the above r
lations and combining the three equations into a single seco
order one we obtain a pendulum equation with constant forc
governing the combination angle,

C09~z!2v2
21V18~ I 1

~121!!

3~2pv2!21E
0

2p

F1~ I 1
~121! ,B0~z!,C0~z!,d!dd

50⇒C09~z!1m cosC0~t!52n, (14)

wherem50.8987JAB0/v2
3/2K(1/2)L and n5(lv2)/3. Depend-

ing on the relative values ofm and n, the phase portrait of~14!
possess~if m.n! or not ~if m<n! a closed homoclinic loop of
containing closed periodic orbits surrounding a stable equilibri
point ~cf. Fig. 2!. This loop when perturbed by higher order term
becomes the attracting region responsible for sustained reson
Transactions of the ASME
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capture in system~1!: under certain initial conditions, trajectorie
of the system in anO(A«) neighborhood of the 1:1 resonanc
manifold get attracted to the region of the loop where they p
form multiple oscillations around the attractor. Under differe
initial conditions trajectories lie outside the homoclinic loop a
get repelled away from the attracting region; in this case no re
nance capture occurs. Note that sustained resonance captu
only possible ifm.n, which leads to the following lower bound
for B0 :

B0.S lv2
5/2K~1/2!L

2.696J D 2

~condition for resonance capture!.

(15)

This relation indicates that for resonance capture to occur
action variable~i.e., the energy! of the directly excited linear os
cillator 1 must be above a certain threshold. This conclusion i
accordance with the conjecture made in Part I of this work~@1#!.

After computing thez-dependent functions~11! by eliminating
secular terms from~12!, theO(A«) approximations are compute
as

j1~d,z!5v2
21F̂1

0~ I 1
~121! ,B0 ,C0~z!,d!1A1~z!

h1~d,z!5B1~z! (16)

c1~d,z!5C1~z!

where F̂1
0(I 1

(121) ,B0 ,C0(z),d)5*dF̂1(I 1
(121) ,B0 ,C0(z),u)du is

a 2p-periodic function ind, and F̂1 denotes the zero-mean com
ponent of the functionF1 ~i.e., the function minus the constan
term appearing in the first of Eqs.~13!!. The unknown
z-dependent functions of the solutions are computed by elimi
ing secular terms at the next order of approximation.

Fig. 2 Phase portraits of system „14… for, „a… mÌn, and „b… mÏn
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O„«… Approximations. The subproblems governing th
second-order approximations are rather involved and are omi
The equations for eliminating the secular terms from these s
problems are given below:

A18~z!5T1~z!C1~z!1q1~z!

C18~z!5T2A1~z!1q2~z! (17)

B18~z!5~2pv2!21E
0

2p

F2~ I 1
~121! ,B0 ,C0~z!,d!dd

where

T1~z!5~2pv2!21E
0

2p ]F1

]c
~ I 1

~121! ,B0 ,C0~z!,d!dd,

T25v2
21V18~ I 1

~121!!

q1~z!5~2pv2!21E
0

2pF2
]F̂1

0

]C0~z!
C08~z!

1
]F1

]h
~ I 1

~121! ,B0 ,C0~z!,d!B1~z!

1
]F1

]I 1
~ I 1

~121! ,B0 ,C0~z!,d!A0~z!Gdd

q2~z!5~2pv2
2!21V18~ I 1

~121!!E
0

2p

F̂1
0~ I 1

~121! ,B0 ,C0~z!,d!dd

1~2pv2!21E
0

2p

@G12G2#~ I
1
~121! ,B0 ,C0~z!,d!dd

1~2v2!21V19~ I 1
~121!!A0

2~z!.

The third of Eqs.~17! uncouples from the first two, which form a
set of nonhomogeneouslinear equations with a parameter
dependent coefficient. These equations govern the perturbatio
the phase portraits of Fig. 2 and produce the attracting region
resonance capture.

Although algebraically involved, we now show that the soluti
of the linear set~17! can be written in explicit analytical form. To
this end, we combine the first two equations into a single seco
order equation as follows:

C19~z!2T2T1~z!C1~z!5T2q1~z!1q28~z!. (18)

We note that the parameter-dependent coefficient of~18! can be
expressed as

T2T1~z!5
]

]c H v2
21V18~ I 1

~121!!~2pv2!21

3E
0

2p

F1~ I 1
~121! ,B0 ,c,d!ddJ

c5C0~z!

(19)

i.e., as the partial derivative inc of the second part of Eq.~14!
governingC0(z). It follows that one homogeneous solution o
~18! is given byC1

(1h)5aC08(z). A second linearly independen
homogeneous solution can be obtained by considering the e
tion for the Wronskian of ~18!, leading to, C1

(2h)

5bC08(z)*z@C08(u)#22du. These two linearly independent homo
geneous solutions are used to compute a particular integral by
method of variation of parameters, which completes the solut
The final expression of the solution of~18! is given by
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C1~z!5Fa2E
0

z

C1
~2h!~v !@T2q1~v !1q28~v !#dvGC1

~1h!~z !

1Fb2E
0

z

C1
~1h!~v !@T2q1~v !1q28~v !#dvGC1

~2h!~z !.

(20)

The coefficientsa and b in ~20! are determined by satisfiying
limiting conditions of the solution asz increases or decrease
Examples of such calculations are given in@18#.

In the next section we construct analytical approximations
the transient response of~1! in the initial phase of energy pumpin
~2!. In the spirit of the previous section the analysis is based
the assumption of 1:1 internal resonance, and the results com
favorable to direct numerical simulations.
46 Õ Vol. 68, JANUARY 2001
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3 Analytical Approximations
We start the analysis by rewriting system~1! in the following

form:

ÿ11«l ẏ11«y11Cy1
32«y250

(21)

ÿ21«l ẏ21v2y22«y150

wherev25v2
21«. Note that in~21! the damping coefficients are

assumed to be ofO(1), in contrast to~1!. At this point we com-
plexify the problem by introducing the new complex variables

c15 ẏ11 j vy1 , c25 ẏ21 j vy2 , (22)

j 5(21)1/2, and express~21! as
Fig. 3 Numerical solutions of system „30…: „a… no resonance capture „MÄ2.8…, „b, c, d… resonance capture „MÄ4.0, 10.0, 15.0…
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energy pumping occurs „hÄ0.5…, and „b,c… when energy pump-
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proximations based on „30…, Numerical simulations.
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ċ12
j v

2
~c11c1* !1

«l

2
~c11c1* !2

j «

2v
~c12c1* !

1
jC

8v3 ~c11c1* !31
j «

2v
~c22c2* !50

(23)

ċ22 j vc21
«l

2
~c21c2* !1

j «

2v
~c12c1* !50.

Relations~23! are exact. We now seek an approximate solution
~23! is sought, based on the assumption of fast oscillations
frequencyv:

c15w1ej vt, c25w2ej vt. (24)

Relations~24! signify 1:1 internal resonance condition in the fa
dynamics of the system. Substituting~24! into ~23!, and averaging
over the fast periodic variablesej vt, we obtain the following av-
eraged system:

ẇ11
j

2 S v2
«

v Dw11
«l

2
w12

3 jC

8v3 uw1u2w11
j «

2v
w250

(25)

ẇ21
«l

2
w21

j «

2v
w150.

For l50 the system is completely integrable and has been fur
analyzed in@1#. To account for the amplitude decays due to dam
ing we introduce the new variabless1 ands2 defined by

w15s1 exp~2«lt/2!, w25s2 exp~2«lt/2! (26)

and express~25! as

ṡ11
j

2 S v2
«

v Ds12
3 jCe2«lt

8v3 us1u2s11
j «

2v
s250

(27)

ṡ21
j «

2v
s150.

Manipulating the above set of equations it can be shown tha
possesses the first integral,

us1u21us2u25M2, (28)

which enables one to express the amplitudes in the following w

s15M sinuej d1, s25M cosuej d2. (29)

Substituting~29! into ~27!, and performing algebraic manipula
tions we reduce the problem to a final set of parameter-depen
nonlinear equations on the 2-Torus:

ḋ1
v

2
2

3CMe2«lt

8v3 sin2 u1
«

v
cot 2u cosd50

(30)

u̇1
«

2v
sind50

whered5d12d2 . We mention that although the set of equatio
above appears to be similar to the one derived in@1# for l50
~actually, the two sets become identical by settingMe2«lt5N in
the notation of that work!, the damped dynamics is dominated b
the ‘‘drifting’’ of the ‘‘instantaneous equilibrium points’’ due to
the exponentially decaying term in~30!. We note thatd denotes
the relative phase, whileu determines the instantaneous amp
tudes of the motions of oscillators 1 and 2.

The numerical integrations of system~30! for varying values of
the initial first integralM reveal clearly the energy pumping an
resonance capture phenomenon occurring in system~1!. These
results are presented in the~d,u! phase plots of Fig. 3 for param
etersv51, C52.0, «50.1, l51.0 and initial conditionsd~0!50
andu~0!50.01. These numerical results were obtained by mat
ing displacements and velocities of the following two soluti
branches:~a! the initial branch is obtained by Taylor expansio
JANUARY 2001, Vol. 68 Õ 47
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of the original equations of motion~1! close to t50 and takes
fully into account the initial conditions of the system;~b! the later
branch consists of the numerical solution of the analytic appro
mation~30!. For M52.8 the initial energy imparted in oscillator
remains confined to that oscillator since the damped oscilla
corresponds to small values ofu ~cf. relations~29!!. At higher
values ofM we note energy pumping to oscillator 1, correspon
ing to trajectories which start with small values ofu and after
some transients settle to damped oscillations withu close top/2.
Of particular interest is the fact that the analytical results cap
nicely not only the resonance capture of trajectories, but also t
sient capture, whereby an initially transient trajectory is tem
rally captured and then released by the attracting region of
system. This last dynamical phenomenon can be realized by
ably choosing the initial conditions in~30!, and is depicted in
Figs. 3~b–d!.

To compare the analytical predictions with the numerical
sults reported in@1# in Fig. 4 we depict analytical approximation
for the transient responses of~1! based on Eqs.~30! for param-
etersC55.0, v2

250.9, «50.1, l50.5; the initial conditions are
given zero values except for the initial velocity of the~linear!
oscillator 2 which assumes the valueẏ2(0)5A2h. For compari-
son purposes in the same pictures we depict the results of d
numerical simulations of system~1!. In Fig. 4~a! where no energy
pumping occurs there is poor agreement between the two res
In Figs. 4~b,c! where energy pumping takes place there is sa
factory agreement between the predicted and actual transien
sponses, although some overshooting or undershooting ca
noted over certain time intervals. These errors can be attribute
the averaging approximations introduced in deriving Eqs.~25!,
and to the strong nonlinearities of the system considered. Th
results indicate that when 1:1 resonance capture occurs the
lytical method presented in this section can satisfactorily pre
the nonlinear transient responses of the system. This shoul
expected, since by relations~24! the analytical constructions wer
based on an 1:1 internal resonance in the ‘‘fast’’ dynamics.

4 Discussion
We analyzed the energy pumping phenomenon in the im

sively excited, damped system~1! by means of two analytica
techniques. The first technique, is based on the perturbation a
sis of the dynamics in anO(A«) neighborhood of the 1:1 reso
nance manifold of the system. Analytical results are derived
the attractive region responsible for the resonance capture.
second method is based on the assumption of 1:1 internal r
nance in the fast dynamics, and utilizes complexification and
eraging of the equations of motion. This leads to satisfactory a
lytical approximations of the nonlinear transient responses of
system in the regime of energy pumping.

The energy pumping phenomenon considered in Parts I an
of this work can lead to the design of structures with local pass
or active sinks where externally imparted energy is initially
48 Õ Vol. 68, JANUARY 2001
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rected and then eliminated. Of particular interest to the author
the potential enhancement of the energy pumping phenome
through either nonlinear coupling stiffness elements, or ac
control. This would pave the way for practical implementation
energy pumping in vibration and shock isolation designs of en
neering systems.
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Parametric Instability of Axially
Moving Media Subjected to
Multifrequency Tension and
Speed Fluctuations
This work investigates the stability of axially moving media subjected to param
excitation resulting from tension and translation speed oscillations. Each of these ex
tion sources has spectral content with multiple frequencies and arbitrary phases. Sta
boundaries for primary parametric instabilities, secondary instabilities, and combina
instabilities are determined analytically through second-order perturbation. The class
result that primary instability occurs when one of the excitation frequencies is clos
twice a natural frequency changes as a result of multiple excitation frequencies. Un
interactions occur for the practically important case of simultaneous primary and
ondary instabilities. While sum type combination instabilities occur, no difference
instabilities are detected. The nonlinear limit cycle amplitude that occurs under prim
instability is derived using the method of multiple scales.@DOI: 10.1115/1.1343914#
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Introduction
The transverse vibration of axially moving materials subjec

to parametric excitations has received considerable attention
many researchers. Most studies have addressed the stability u
parametric excitation with a single frequency component. Pra
cal systems, however, are subjected to multifrequency excitat
that may significantly impact the dynamic behavior. In vehic
serpentine belt drives, for example, the engine drives a cranks
pulley that powers a single belt, which in turn supplies power
multiple automotive accessories. Engine firing pulses cause
translation speed fluctuations. Additionally, these engine fir
pulses, in combination with dynamic accessory torques, ex
pulley rotational vibrations that lead to tension oscillations in
individual belt spans. The speed and tension fluctuations b
parametrically excite the belt spans. The speed oscillations h
spectral content related to harmonics of the engine speed, an
tension oscillations have multifrequency spectral content ass
ated with the engine speed and dynamic accessory
frequencies.

This study investigates the stability of parametrically excite
moving media subjected to dynamic tension and speed fluc
tions with arbitrary spectral content. A discretization/perturbat
method yields the excitation frequency-amplitude parameter p
boundaries separating stable and unstable regions for the s
mode primary and secondary resonances and the combin
resonances for any two modes. These boundaries are determ
analytically in closed form through second-order perturbati
Nonlinear limit cycles that occur in the parametric resonance
gions are determined analytically and numerically.

This work builds on that of Mockensturm et al.@1#, who deter-
mined closed-form analytical expressions for all primary and
first sum type combination resonance regions of a moving st
with tension fluctuation. Similarly, Pakdemirli and Ulsoy@2# de-
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termined stability boundaries for the moving string with spe
fluctuation. Both of these analyses are limited to monofreque
parametric excitation and first-order approximation. They do
address secondary resonances. The present work shows u
and practically important behaviors associated with mu
frequency excitation, secondary resonances, and second-
approximation.

The two works noted above give a good review of prior stud
on parametrically excited moving media. Particularly releva
studies include the work of Mahalingam@3#, Mote @4,5#,
Naguleswaran and Williams@6#, and Asokanthan and Ariaratnam
@7#. Recent studies include Oz et al.@8# and Chakraborty and Mal-
lik @9#. Ulsoy et al.@10# motivated the studies for automotive be
drives by showing a primary source of transverse belt vibration
be parametric instability caused by tension fluctuation.

Problem Formulation
The system is a beam/string of lengthL moving with time-

dependent transport velocityc(T). The equation of motion for
transverse vibration is

rA~VTT1cTVx12cVTX1c2VXX!2~Pd1Ps!VXX1EIVXXXX50
(1)

whererA is the mass per unit length,EI is the bending stiffness
V is the transverse displacement,T is the time,X is the spatial
coordinate,Ps is the mean belt tension, andPd(T) is the dynamic
tension. The dynamic tension results from longitudinal b
motion and midplane stretching from transverse deflection. Un
the assumption of quasi-static stretching~@11#!, the dynamic
tension is

Pd5
EA

L FU~L,T!2U~0,T!1
1

2 E0

L

Vx
2dXG (2)

whereEA is the longitudinal stiffness modulus andU is the lon-
gitudinal displacement. Use of the dimensionless parameters

x,v,u5
X,V,U

L
, t5A Ps

rAL2 T, g5cYAPs

rA
,

z5
EA

Ps
, a5

EI

PsL
2 (3)
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v tt12gv tx1g tvx2~12g2!vxx1avxxxx

2zFu~1,t !2u~0,t !1
1

2 E0

1

vx
2dxGvxx50. (4)

The relative longitudinal motion of the end points, which r
sults from rotational pulley oscillations, consists of multifr
quency excitation of the form

z@u~1,t !2u~0,t !#5z(
i 51

k

ui cos~V i t1u i !5(
i 51

k

« i cos~V i t1u i !.

(5)

« i5(EAui)/Ps,1 represents the ratio of the dynamic tensi
fluctuation caused by thei th spectral component of the relativ
endpoint motion to the mean span tension. The relative longit
nal motion of the endpointsu(1,t)2u(0,t) is specified. In serpen
tine belt drives, it is calculated from dynamic analysis of the d
crete pulley rotations induced by crankshaft excitations a
dynamic accessory torques. Engine firing pulses cause a s
‘‘ripple’’ on the mean crankshaft rotation speed. The associa
belt speed fluctuations are

g5g01(
i 51

k8

« i8 sin~V i8t1u i8!. (6)

Typically, the dominant speed and tension fluctuation freque
equalsN/2 times the engine speed, whereN is the number of
cylinders, though higher harmonics of this frequency and acc
sory torque frequencies are also present. The dimensionless
quencies are related to the dimensional ones (V i* ) by V i

5ArAL2/PsV i* . From ~4!, the linearized equation of motion
with tension and speed fluctuations is

v tt12g0v tx2~12g0
2!vxx1avxxxx2(

i 51

k

« i cos~V i t1u i !vxx

1(
i 51

k8

« i8$2v tx sin~V i8t1u i8!12g0vxx sin~V i8t1u i8!

1V i8vx cos~V i8t1u i8!%1S (
i 51

k8

« i8 sin~V i8t1u i8!D 2

vxx50.

(7)

For subsequent discretization, it is convenient to rewrite~7! in
state space form as

AWt1BW1(
i 51

k8

« i8$sin~V i8t1u i8!C1V i8 cos~V i8t1u i8!D%W

2(
i 51

k

« i cos~V i t1u i !EW1S (
i 51

k8

« i8 sin~V i8t1u i8!D 2

EW

50 (8)

A5F 1 0

0 2~12g0
2!

]2

]x2 1a
]4

]x4
G ,

B5F 2g0

]

]x
2~12g0

2!
]2

]x2 1a
]4

]x4

~12g0
2!

]2

]x22a
]4

]x4 0
G ,
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C5F 2
]

]x
2g0

]2

]x2

0 0
G , D5F 0

]

]x

0 0
G ,

(9)

E5F 0
]2

]x2

0 0
G , W5Fv t

v G .
The inner product in the state space is^W,V&5*0

1WTV̄dx, where
the overbar denotes complex conjugate and superscriptT denotes
transpose.

The Galerkin basis consists of the state-space eigenfunct
for the nonparametrically excited system~8! ~@12#!

Fn5F j vncn

cn
G5Flncn

cn
G (10)

wherecn are the complex eigenfunctions of~7! (« i5« i850) and
vn are the natural frequencies. TheFn possess the orthonormalit
properties ^AFn ,Fm&5dmn , ^BFn ,Fm&52lndmn5
2 j vndmn . For the moving string model (a50) the eigensolu-
tions are

cn5
1

npA12g0
2

ejnpg0x sin~npx!, ln5 j vn5 jnp~12g0
2!

(11)

for fixed pulleys at the string supports. Eigensolutions for a tr
eling beam can not be expressed in closed form and require
merical solution~@4#!.

Multifrequency Parametric Instabilities
To investigate primary parametric instabilities, we use a sing

term Galerkin discretization for thenth mode obtained by use o
one traveling system basis function

W5jn~ t !Fn~x!1 j̄n~ t !F̄n~x!52 Re@jn~ t !Fn~x!#. (12)

Mockensturm et al.@1# demonstrated the excellent convergen
achieved with this single term expansion for a string model. S
stituting ~12! into ~8! and taking the inner product withFn yields
the complex, time-varying equation~the notation Enm

5^EFn ,Fm&, En̄m5^EF̄n ,Fm&, Ēnm5^EFn ,Fm&, etc., and
similar relations for theC andD operators are used throughout!

j̇n2 j vnjn2F«(
i 51

k

f i cos~V i t1u i !G ~jnEnn1 j̄nEn̄n!

1F «(
i 51

k8

f i8 sin~V i8t1u i8!G ~jnCnn1 j̄nCn̄n!

1F «(
i 51

k8

f i8V i8 cos~V i8t1u8!G ~jnDnn1 j̄nDn̄n!50,

n51,2,¯ (13)

where all the excitations are taken to be of the same order, th

« i5« f i , « i85« f i8 f i , f i850~1!. (14)

Based on the Floquet theory~@13#!, combinations of parametric
excitation frequency and amplitude for which~13! has periodic
solutions separate the regions of bounded and unbounded
tions. These stability boundaries are sought in the form of per
bation expansions~@11#!,

jn5p01«p11«2p2 , vn5ṽn1«r 11«2r 2 . (15)

For simplicity, the body of the paper examines the case of tens
excitation alone (« i850), where~13! reduces to
Transactions of the ASME
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j̇n2 j vnjn2F«(
i 51

k

f i cos~V i t1u i !G ~jnEnn1 j̄nEn̄n!50

n51,2,¯ . (16)

Stability results for speed fluctuations and simultaneous ten
and speed fluctuations are given in the Appendix. Substitution
~15! into ~16! gives the sequence of perturbation problems

ṗ02 j ṽnp050 (17)

ṗ12 j ṽnp15 j r 1p01F(
i 51

k

f i cos~V i t1u i !G @p0Enn1 p̄0En̄n#

(18)

ṗ22 j ṽnp25 j r 1p11 j r 2p0

1F(
i 51

k

f i cos~V i t1u i !G @p1Enn1 p̄1En̄n#.

(19)

The periodic solution of~17! is

p05aei ṽnt. (20)

Substitution of~20! into ~18! yields

ṗ12 j ṽnp15 j r 1aej ṽnt1(
i 51

k
f i

2
$aEnn@ej @~V i1ṽn!t1u i #

1e2 j @~V i2ṽn!t1u i ##

1āEn̄n@ej @~V i2ṽn!t1u i #1e2 j @~V i1ṽn!t1u i ##%.

(21)

1 Primary Instability. In general, the sole secular term
~21! is j r 1aej ṽnt and its elimination leads to the trivial solutio
(a50) or r 150 ~secondary instability, considered later!. When
any excitation frequency is near 2vn , however, additional secula
terms exist. In this case,V l'2vn ~that is, V l52ṽn! and V i
Þ2vn for iÞ l . The periodicity condition demands that secu
terms vanish, yielding

j r 1a1
f l

2
āEn̄nej u l50. (22)

Separating the real and imaginary parts leads to

F 2r 11
f l

2
Im~En̄nej u l !

f l

2
Re~En̄nej u l !

2
f l

2
Re~En̄nej u l ! r 11

f l

2
Im~En̄nej u l !

G F Im~a!

Re~a!G50.

(23)

For a nontrivial solution of~23! to exist,

r 156
f l

2
uEn̄nu. (24)

With r 156( f l /2)uEn̄nu, a solution of~21! is

p15bej ṽnt1(
i 51

k

j
f iaEnn

2V i
@2ej @~V i1ṽn!t1u i #1e2 j @~V i2ṽn!t1u i ##

2 (
i 51,iÞ l

k

j
f i āEn̄n

2~V i2V l !
ej @~V i2ṽn!t1u i #

1(
i 51

k

j
f i āEn̄n

2~V i1V l !
e2 j @~V i1ṽn!t1u i #. (25)

Substitution of~20! and ~25! into ~19! yields
Journal of Applied Mechanics
ion
of

n

ar

ṗ22 j ṽnp25 j r 2aej ṽnt1 j r 1bej ṽnt1
f l

2
En̄nb̄ej ~ṽnt1u l !

1 j (
i 51,iÞ l

k
f i

2auEn̄nu2

4~V i2V l !
ej ṽnt2 j(

i 51

k
f i

2auEn̄nu2

4~V i1V l !
ej ṽnt

1N.S.T. (26)

where N.S.T. denotes nonsecular terms. Elimination of sec
terms fromp2 requires

j r 1b1
f l

2
b̄En̄nej u l52 jaH r 21uEn̄nu2F (

i 51,iÞ l

k
f i

2

4~V i2V l !

2(
i 51

k
f i

2

4~V i1V l !
G J . (27)

Considering Re(b) and Im(b) as the unknowns,~22!–~24! show
that the coefficient matrix in~27! is singular. The solvability con-
dition for ~27! leads tor 2 , and the final boundary curves ar
obtained from~15! as

vn5
V l

2
6

« l

2
uEn̄nu1uEn̄nu2F2 (

i 51,iÞ l

k
« i

2

4~V i2V l !

1(
i 51

k
« i

2

4~V i1V l !
G . (28)

Using V l52vn1O(«), ~28! is converted to

V l52vn6« l uEn̄nu2uEn̄nu2F2 (
i 51,iÞ l

k

« i
2

2vn

V i
224vn

2 1
« l

2

8vn
G .

(29)

Equation~29! applies for moving, tensioned beams. When sp
cialized to the moving string (a50), the result~29! can be ex-
pressed entirely in terms of system parameters with the follow
expressions obtained from~11!:

En̄n5~12e22 jnpg0!/~4g0!, Enn5 jnp~11g0
2!/2. (30)

Up to the first order of perturbation, the stability boundaries
given by ~29! are determined solely by the root cause parame
excitationV l'2vn with no effect from excitations at other fre
quencies ~see Eq. ~24!!. Changes in the stability boundarie
caused by the presence of multiple parametric excitation terms
evident at higher orders of perturbation. Note that the prim
instability boundaries~29! are not affected by the phase anglesu i
between the multiple excitations. These features are also refle
in the stability boundaries for speed excitation and simultane
speed and tension excitation derived from~13! ~~52! and ~55! in
the Appendix!. In the simultaneous tension and speed excitat
case~~55!–~57!!, the tension and speed fluctuations share a co
mon frequency component that excites instability. This is typi
of automotive belt drives where the tension and speed both fl
tuate at the engine firing frequency.

Figure 1 compares the stability boundaries for a moving str
(a50) under two simultaneous tension excitations (« i850) ob-
tained by three methods: first-order perturbation, second-o
perturbation, and numerical methods.V1'2v1 is the root cause
of primary instability. Numerical boundaries are determined
examining the eigenvalues of the numerically integrated fun
mental matrix of~16! for varying V1 and «1 . The first-order
stability boundaries~dotted lines! do not capture the effects of th
second parametric excitation (V2) and are the same as for mono
frequency excitation. The second-order boundaries reflect the
pact of the second excitation, and the entire instability reg
shifts ~solid lines!. The classical result that parametric instabili
JANUARY 2001, Vol. 68 Õ 51
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Fig. 1 Comparison among numerical results „* …, first-order perturbation „dots … and
second-order perturbation „solid curves … of the first mode „v1Ä2.76… primary instability
region of an axially moving string under two parametric tension excitations. gÄ0.35, «2
Ä0.35.
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occurs when an excitation frequency is twice a natural freque
does not hold when multiple parametric excitations are pres
To see this, consider~29! when two excitations exist,

V152vn6«1uEn̄nu2uEn̄nu2F «1
2

8vn
2

2«2
2vn

~V2
224vn

2!
G .

Because of the excitation at frequencyV2 , the cusp («1→0)
moves fromV152vn to V152vn12uEn̄nu2«2

2vn /(V2
224vn

2).
The whole instability region shifts accordingly, and paramet
instability occurs at higher excitation frequency (V1.2vn) when
V2.2vn and lower excitation frequency (V1,2vn) when V2
,2vn . Note that a separate analysis including additional sec
terms is required for the caseV2'V1'2vn .

The continuous dependence of the first mode primary instab
region with the two excitation amplitudes«1,2 is illustrated in Fig.
2. V1 causes the primary instability. The shift of the instabili
region away fromV152v1 due to the second excitation is appa
ent from the drift in the cusp at«150.

2 Secondary Instability. Primary instabilities are charac
terized by a response frequency of half the parametric excita
frequency. In automotive belt drives, however, transverse bel
bration frequently occurs where the belt frequency is the sam
the engine firing frequency. This is characteristic of second
instability where a parametric excitation frequency is close to
of the system natural frequencies (V l'vn).

In the absence of primary instability, the only secular term
~21! is j r 1aej ṽnt. Specifying r 150, ~25! is again a solution of
~21! except the second summation allows any value ofi. Substi-
tution of this solution into~19! yields
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ṗ22 j ṽnp25 j r 2aej ṽnt

2 j(
i 51

k

(
p51

k
f i f pāEn̄nEnn

4~Vp22ṽn!
ej @~V i1Vp2ṽn!t1~u i1up!#

2 j(
i 51

k

(
p51

k
f i f pāEn̄nĒnn

4Vp
ej @~V i1Vp2ṽn!t1~u i1up!#

1 j(
i 51

k
f i

2auEn̄nu2

4~V i22ṽn!
ej ṽnt2 j(

i 51

k
f i

2auEn̄nu2

4~V i12ṽn!
ej ṽnt

1N.S.T. (31)

Elimination of secular terms in~31! for the case whenV l'vn
andV iÞvn for iÞ l leads to the secondary instability boundari

V l5vn6
« l

2

vn
Im~Enn!uEn̄nu

2uEn̄nu2F2 (
i 51,iÞ l

k

« i
2

vn

V i
224vn

2 1
« l

2

3vn
G . (32)

Analogous results for speed and tension/speed excitation are g
in the Appendix.

3 Simultaneous Primary and Secondary Instability. In a
system under multiple parametric excitations, a mode may be
multaneously excited to primary instability by one excitation a
secondary instability by another. This situation is expected in
tomotive belt drives as discussed later. With simultaneous in
bility, the instability boundaries may be significantly differe
from those of either excitation acting individually. Figure 3~a!
shows the first mode primary and secondary instability bounda
for a moving string for a single excitation (V1). The secondary
Transactions of the ASME



Journal of Applied
Fig. 2 Continuous dependence on excitation amplitudes of the first mode „v1Ä3.07…
primary instability region of an axially moving string under two parametric tension exci-
tations. V2Ä7,gÄ0.15.
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instability region is characteristically much narrower than the p
mary one. When a second tension excitation exists with freque
V252V1'2vn , primary instability from V2 occurs near the
secondary instability fromV1 . Perturbation analysis of this dua
excitation case gives the instability region

V15vn6
«2

2
uEn̄nu2uEn̄nu2F «1

2

3vn
1

«2
2

16vn
G7

«1
2

vn
Im~Enn!uEn̄nu.

(33)

As shown in Fig. 3~b!, the coincidence of the primary instabilit
caused byV2 and the secondary instability ofV1 significantly
widens the secondary instability region. Notice that the unsta
region iswider for small«1 . Considering the dual excitation cas
with V25(1/2)V1 , the presence of a simultaneous secondary
stability from V2 impacts the primary instability atV1'2vn as
seen by comparing Figs. 3~a! and 3~c!. Here, the primary instabil-
ity region narrows overall andclosesfor nonzero amplitude of the
excitation causing primary instability («1'0.1). This phenom-
enon is further depicted in Figs. 4 and 5 for instability in t
second mode. Figures 4~a! and 4~b! contrast the dependence o
the second mode primary instability region on excitation am
tude and speed for the cases with and without simultaneous
ondary instability. In Fig. 4~b!, notice that the instability region
closes for nonzero«1'0.3 even though each of theV1 and V2
excitations induce instability individually. While the width of th
primary instability regions widen with excitation amplitude~Fig.
4~a!!, the width of the simultaneous primary/secondary reg
may decrease with excitation amplitude~Fig. 4~b! for small «1!.
One can see similar interplay between the primary and secon
instabilities in Fig. 5, which is analogous to Fig. 4 except t
focus is on the secondary instability.

The widening of the secondary instability region (V1'vn)
when a second excitationV252V1'2vn is present~Fig. 3~b!!
has implications for practical systems. In automotive belt driv
~and other systems!, the excitation is periodic but not sinusoida
Because of the integer harmonics of the fundamental freque
~the firing frequency in automotive belt drives! in the excitation
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e
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Fig. 3 First mode „v1Ä2.95… stability boundaries of an axially
moving string caused by three parametric excitation combina-
tions for gÄ0.25: „a… single excitation V1 , „b… two excitations
V2Ä2V1 ,«2Ä0.3, and „c… two excitations V2Ä„1Õ2…V1 ,«2
Ä0.3
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spectrum, simultaneous primary and secondary parametric in
bility is likely. This may explain the common observation of be
span vibration at the engine firing frequency in automotive driv
To explain these observations with a monofrequency excita
model of secondary instability, large excitation amplitudes
required because of the narrowness of the secondary insta
region~Fig. 3~a!! and the inherent damping. The behavior is mo
plausibly understood with a multifrequency excitation model
realistic excitation amplitudes.

As the translation speed increases, both of the secondary
primary instability regions narrow and even close at some spe

Fig. 4 Dependence of the second mode „v2Ä2p„1Àg0
2
……

moving string principal instability region on translation speed
for „a… single excitation, V1É2v2 , „b… two excitations, V1
É2v2 and V2Ä„1Õ2…V1Év2 ,«2Ä0.3

Fig. 5 Dependence of the second mode „v2Ä2p„1Àg0
2
……

moving string secondary instability region on translation
speed for „a… single excitation, V1Év2 , „b… two excitations,
V1Év2 and V2Ä2V1É2v2 ,«2Ä0.3
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~Figs. 4~a! and 5~a!!. As pointed out by Mockensturm et al.@1#
for primary instability, there aren subcritical translation speed
where thenth mode primary instability region closes. The sam
holds true for secondary instability.

4 Combination Instability. This section addresses sum an
difference type combination instabilities involving two mode
Taking thenth andmth modes, the discretized equations are o
tained from the expansion

W5jn~ t !Fn~x!1 j̄n~ t !F̄n~x!1jm~ t !Fm~x!1 j̄m~ t !F̄m~x!

52 Re@jn~ t !Fn~x!1jm~ t !Fm~x!#. (34)

Considering tension fluctuations only, use of~34! in Galerkin dis-
cretization of~8! yields

j̇n2 j vnjn2F«(
i 51

k

f i cos~V i t1u i !G
3~jnEnn1 j̄nEn̄n1jmEmn1 j̄mEm̄n! (35)

j̇m2 j vmjm2F«(
i 51

k

f i cos~V i t1u i !G
3~jnEnm1 j̄nEn̄m1jmEmm1 j̄mEm̄m!. (36)

Motivated by the expected sum-type instability whenV l'vn
1vm , the solution forms are chosen as

V l5~vn1vm!22«r 122«2r 2

5~vn2«r 12«2r 2!1~vm2«r 12«2r 2!5ṽn1ṽm

⇒ jn5p01«p11«2p2 ,
vn5ṽn1«r 11«2r 2 ,

jm5q01«q11«2q2

vm5ṽm1«r 11«2r 2
. (37)

Substitution of~37! into ~35! and ~36! yields

ṗ02 j ṽnp050, q̇02 j ṽmq050 (38)

ṗ12 j ṽnp15 j r 1p01F(
i 51

k

f i cos~V i t1u i !G @p0Enn1 p̄0En̄n

1q0Emn1q̄0Em̄n# (39)

q̇12 j ṽmq15 j r 1q01F(
i 51

k

f i cos~V i t1u i !G @p0Enm1 p̄0En̄m

1q0Emm1q̄0Em̄m# (40)

and similar equations forp2 and q2 . The periodic solutions of
~38! arep05anej ṽnt, q05amej ṽmt. With these solutions, elimina
tion of secular terms in~39! and ~40! for V l'vn1vm requires

j r 1an1
f l

2
āmEm̄nej u l50 j r 1am1

f l

2
ānEn̄mej u l50. (41)

After solution of~41! and use ofV l5vn1vm1O(«), ~37! gives

V l5vn6vm1« lAEn̄mĒm̄n (42)

A natural extension to second-order perturbation was also ca
lated. As with primary and secondary instabilities, these bou
aries are independent of the phasing between the different ex
tion frequencies. Figure 6 shows the sum type instability region
a moving string under tension fluctuation obtained by first a
second-order perturbation. Note the scaling of Fig. 6; the com
nation instability region is much narrower than the primary ins
bility region ~Fig. 1!. The effects from multiple excitation fre
quencies, including the shift of the entire instability region, a
minimal, and first-order approximations that do not capture th
Transactions of the ASME



Journal of Applie
Fig. 6 Moving string stability boundaries of first „v1Ä3.071… and second mode „v2
Ä6.142… sum-type combination instability „V1Év1¿v2… for two parametric tension exci-
tations. Dotted curves denote first-order perturbation, and solid curves denote second-
order perturbation.
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effects appear justified for practical systems. See the Appendix
speed excitation and simultaneous speed and tension excit
results.

To examine possible difference type combination instabilit
whereV l'vn2vm , the approximate solutions are constructed

V l5~vn2vm!22«r 122«2r 2

5~vn2«r 12«2r 2!2~vm1«r 11«2r 2!5ṽn1ṽm

⇒ jn5p01«p11«2p2 ,
vn5ṽn1«r 11«2r 2 ,

jm5q01«q11«2q2

vm5ṽm2«r 12«2r 2
.

(43)

In this case, the first-order stability boundaries are

V l5~vn2vm!6« lAEmnEnm. (44)

Closed-form evaluation of the inner products in~44! gives com-
plex values forV l . This implies that there are no difference typ
instabilities up to first-order perturbation.

The results given in~29!, ~32!, ~33!, ~42!, and the Appendix
generalize those of Mockensturm et al.@1#, where tension fluctua-
tion is examined, and Pakdemirli and Ulsoy@2#, where speed fluc-
tuation is considered. In those analyses, the parametric excita
is restricted to a single harmonic term of either tension or sp
excitation, only first-order approximations are derived, and s
ondary instabilities are not investigated.

Nonlinear Response Amplitude for Primary Instability
By including the midplane stretching nonlinearity in~4!, trans-

verse vibration amplitudes are determined for the principal pa
metric resonance regions. Allowing moderate displacements
the orderingv5O(A«) ~@1#!, the nonlinear form of~7! is
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for
tion
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ec-

ra-
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AWt1BW1«(
i 51

k8

f i8 cos~V i8t1u i8!$sin~V i8t1u i8!C

1V i8 cos~V i8t1u i8!D%W

2«S (
i 51

k

f i cos~V i t1u i !1
1

2
zE

0

1

vx
2dxD EW

1S «(
i 51

k8

f i8 sin~V i8t1u i8!D 2

EW50. (45)

Galerkin discretization of~45! using ~12! yields

j̇n2 j vnjn2«F(
i 51

k

f i cos~V i t1u i !1
1

2
~d1jn

21d2jnj̄n1d3j̄n
2!G

3~jnEnn1 j̄nEn̄n!1«(
i 51

k8

f i8$sin~V i8t1u i8!~jnCnn1 j̄nCn̄n!

1V i8 cos~V i8t1u i8!~jnDnn1 j̄nDn̄n!%

1S «(
i 51

k8

sin~V i8t1u i8!D 2

~jn^EFn ,Fn&1 j̄n^EF̄n ,Fn&!

50 n51,2, . . . (46)

d15E
0

1S dcn

dx D 2

dx, d25E
0

1S dcn

dx

dC̄n

dx
D dx,

d35E
0

1S dc̄n

dx
D 2

dx. (47)
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Fig. 7 Time histories and spectra of the modal response under first-mode primary insta-
bility with single frequency tension excitation. „a… analytical approximation, „b…–„d… nu-
merical integration of coupled equations from a three-mode Galerkin discretization. g
Ä0.4, v1Ä0.84p, «1Ä0.35, sÄÀ0.2, V1Ä2v1À2«1sÄ1.68p.
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The method of multiple scales is applied to~46! with the
expansion

jn~ t;«!5p0~ t,t!1«p1~ t,t! (48)

where t and t5«t are the fast and slow time scales. The tim
derivative is defined asd/dt→]/]t1«(]/]t). Insertion of ~48!
into ~46! gives]p0 /]t2 j vnp050 and a similar inhomogeneou
equation forp1 .

The problem of interest is that when speed and tension fluc
tion share a common frequency component that simultaneo
causes primary instability, that isV l5V l8'2vn . The nearness o
V l andV l8 to 2vn is represented byV l5V l852vn22«s, where
s5O(1). With the solution p05Kn(t)ej vnt

5rn(t)ej (bn(t)1st)ej vnt, elimination of secular terms in the dif
ferential equation forp1 yields the conditions

drn

dt
5«rn@Qn sin~2bn!1Pn cos~2bn!1Rnrn

2#
(49)

dbn

dt
5«F2

s

2
2Pn sin~2bn!1Qn cos~2bn!1Snrn

2G
where Pn ,Qn , respectively, are the real and imaginary parts
@2( f l8/2)( jCn̄n1V i8Dn̄n)1( f l /2)En̄n# andRn ,Sn are the real and
imaginary parts of (z/2)@d2Enn1d1En̄n#. The nontrivial equilib-
ria of ~49! are

~rn
0!25

sSn6A~sSn!224~Rn
21Sn

2!S s2

4
2Pn

22Qn
2D

2~Rn
21Sn

2!
. (50)

Stability analyses reveal that the limit cycle with larger amplitu
is stable, and the one with lower amplitude is unstable. W
specialized to the moving string and only tension excitation,
results of Mockensturm et al.@1# are recovered.
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The foregoing single mode analysis ignores the possibility
other modes being excited through nonlinear coupling. Figur
compares the nonlinear response from~50! with numerical inte-
gration of the coupled nonlinear equations from a three-te
Galerkin discretization of~45!. Figures 7~a! and 7~b! show that
the amplitude of the first mode response is accurately predicte
single-mode analysis. There is, however, considerable en
transfer into other modes that is not captured in the single m
analysis~Figs. 7~c! and 7~d!!.

Conclusions
Closed-form expressions are derived for the stability of axia

moving media subjected to multifrequency parametric excitat
from simultaneous tension and speed fluctuations.

1 The effects of the parametric excitations at frequencies o
than the one that is the root cause of an instability are evident o
in a second order perturbation. These effects, however, can
substantial. In a first-order solution, the set of primary and co
bination instability regions for multifrequency excitation are t
superposition of the instability regions for the individual mono
requency excitations.

2 The primary instability region that one expects when an
citation frequency is twice a natural frequency shifts as a resu
the multiple parametric excitations. The classical 2:1 ratio
tween excitation and natural frequencies no longer holds, and
mary parametric instability occurs at different excitation freque
cies higher or lower than 2vn ~Fig. 1!.

3 Secondary resonances that are typically considered be
widen substantially when a second parametric excitation simu
neously excites a primary instability in the same mode~Fig. 3!.
Such conditions occur naturally when the fundamental freque
of periodic ~but not sinusoidal! parametric excitation drives sec
ondary instability and the first harmonic drives primary instabili
Transactions of the ASME
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This provides a plausible explanation for the practically import
case of a serpentine belt span oscillating at the same frequen
the engine firing frequency.

4 Instability regions for combination resonances of the s
type are significantly narrower than those for primary instabili
For practical system damping and realistic excitation amplitud
a first-order approximation appears to be sufficient. Differen
type combination resonances do not occur even with multiple
citation frequencies.

5 The nonlinear response amplitude under primary instab
is determined solely by the excitation causing the instability an
independent of other excitations in a first-order approximati
Transfer of energy from the unstable mode to other modes
result of nonlinear coupling is apparent in a numerical solut
~Fig. 7!, though not captured in a first-order approximation.
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Appendix
Results in this Appendix hold for traveling strings and beam

For traveling strings (a50), the following relations are helpfu
~also see~30!!:

Cn̄n5~12e22 jnpg0!/2, Dn̄n50. (51)

A Primary Instability Caused by Speed Fluctuation:V l8
'2vn , « i50

V l852vn6« l8u2 jCn̄n12vnDn̄nu

2u2 jCn̄n12vnDn̄nu2F2 (
i 51,iÞ l

k8

« i8
2

2vn

V i8
224vn

2 1
« l8

2

8vn
G

1(
i 51

k8 S « i8

2 D 2

uEnnu (52)
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B Secondary Instability Caused by Speed Fluctuation:V l8
'vn , « i50

V l85vn6
« l8

2

vn
Im~Enn!u2 jCn̄n1vnDn̄nu

2u2 jCn̄n1vnDn̄nu2F2 (
i 51,iÞ l

k8

« i8
2

vn

V i8
224vn

2 1
« l8

2

3vn
G

1(
i 51

k8 S « i8

2 D 2

uEnnu (53)

C Combination Instability Caused by Speed Fluctuation:V l8
'vn1vm , « i50

V l85vn1vnn

6« l8A~2 jCn̄m1~vn1vm!Dn̄m!~2 jCm̄n1~vn1vm!Dm̄n!

(54)

D Primary Instability Caused by Tension and Speed Fluct
tion: V l5V l8'2vn

V l5V l852vn6A~« l8u2 jCn̄n12vnDn̄nu!21~« l uEn̄nu!2

2uEn̄nu2F2 (
i 51,iÞ l

k

« i
2

2vn

V i
224vn

2 1
« l

2

8vn
G

2u2 jCn̄n12vnDn̄nu2F2 (
i 51,iÞ l

k8

« i8
2

2vn

V i8
224vn

2 1
« l8

2

8vn
G

1(
i 51

k8 S « i8

2 D 2

uEnnu (55)

E Secondary Instability Caused by Tension and Speed F
tuation:V l5V l8'vn
V l5V l85vn6AS « l
2

vn
Im~Enn!uEn̄nu D 2

1S « l8
2

vn
Im~2 jCnn1vnDnn!u2 jCn̄n1vnDn̄nu D 2

2uEn̄nu2F2 (
i 51,iÞ l

k

« i
2

vn

V i
224vn

2 1
« l

2

3vn
G2u2 jCn̄n1V l8Dn̄nu2F2 (

i 51,iÞ l

k

« i8
2

vn

V i8
224vn

2 1
« l8

2

3vn
G1(

i 51

k8 S « i8

2 D 2

uEnnu

(56)

F Combination Instability Caused by Tension and Speed Fluctuation:V l5V l8'vn1vm

V l5V l85vn1vm6A~« l8!2~2 jCn̄m1~vn1vm!Dn̄m!~2 jCm̄n1~vn1vm!Dm̄n!1~« l !
2En̄mĒm̄n. (57)
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Dynamic Analysis of Rectilinear
Motion of a Self-Propelling Disk
With Unbalance Masses
This paper investigates the dynamics of a rolling disk with three unbalance masse
can slide along radial spokes equispaced in angular orientation. The objective
design trajectories for the masses that satisfy physical constraints and enable the d
accelerate or move with constant velocity. The disk is designed to remain verti
upright and is constrained to move along a straight line. We design trajectories
constant acceleration, first using a static model, and then through detailed analysis
a dynamic model. The analysis based on the dynamic model considers two separate
one where the potential energy of the system is conserved, and the other where
tinually varies. Whereas trajectories conserving potential energy are quite simila
those obtained from the static model, the variable potential energy trajectories are
most general. A number of observations related to the system center-of-mass are
with respect to both trajectories. Following the strategy for constant acceleration ma
vers, we give a simple approach to tracking an acceleration profile and provide s
simulation results. @DOI: 10.1115/1.1344903#
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1 Introduction
Ever since its invention, the wheel has been used primarily

quasi-static device. Enhanced mobility and stability have b
achieved using multiple wheels, large wheels, broad wheel ba
multiwheel drives, etc. Only in the recent past, researchers
posed wheels that are dynamical entities. The Gyrover propo
by Brown and Xu@1#, for example, is a dynamically stabilize
single-wheel robot that uses gyroscopic forces for steering
stability. The Gyrover, in which the wheel and the vehicle are o
and the same, has a number of advantages over multiwhe
vehicles. Before the introduction of Gyrover, a few designs w
proposed for spherical wheels with internal propulsion mec
nisms. An omnidirectional robot comprised of a spherical whe
an arch-shaped body, and an arm-like mechanism, was prop
by Koshiyama and Yamafuji@2#. In two different designs pro-
posed by Halme et al.@3# and Bicchi et al.@4#, a device con-
strained to roll inside the spherical cavity creates unbalance
generates motion. A change in heading is produced by turning
wheel axis. Both designs complicate the control problem by
posing nonholonomic constraints, internal and external to
spherical shell.

To simplify the control problem and from practical conside
ations, we proposed a spherical robot design~@5#!, where the pro-
pulsion mechanism is fixed to the outer skeleton. The propuls
mechanism is comprised of four unbalance masses that are
trolled along radial spokes; the extremities of the spokes de
the vertices of a regular tetrahedron. The control of the f
masses to achieve a desired motion of the spherical wheel po
complicated and challenging problem in dynamics and control.
get insight into this problem, we study the planar case in t
paper. We investigate the dynamics of a rolling disk with thr
unbalance masses, constrained to slide along radial spokes,
figured 120 deg apart from one another. For this system, show
Fig. 1, we propose to control the motion of the masses such

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
24, 1999; final revision, April 16, 2000. Associate Editor: N. C. Perkins. Discuss
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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the disk center can have a specified constant acceleration. We
investigate optimal transition of the disk acceleration from o
value to another. These problems are relevant since a trajecto
the disk can be specified in terms of an acceleration profile.

Besides the mechanism comprised of reciprocating mas
shown in Fig. 1, a number of other mechanisms can be desig
for propelling the disk. For example, a heavy mass constraine
roll on the inner perimeter can create mass eccentricity and c
the disk to roll. Planar versions of the designs by Halme et al.@3#
and Bicchi et al.@4# conform to this category. Also, a spinnin
rotor mounted on the disk can generate reaction torque and c
the disk to roll. This mechanism, with an additional rotor th
allows control of the disk inclination, has been extensively stud
by Ehlers et al.@6# and Yavin@7,8#. In their studies the complete
dynamics of the disk and rotors were considered, and the non
ear control problems of tracking and point-to-point stabilizati
were addressed. A number of other authors~Getz@9# and Rui and
McClamroch@10#, for example! have also addressed the stabiliz
tion problem in the rolling disk but few have investigated t
dynamics of viable propulsion mechanisms.

In this paper, we first describe a propulsion mechanism fo
vertically upright rolling disk, constrained to move along
straight line. In Section 3 we present preliminary analysis of
mechanism based on a static model. Two solutions are prese
in this section for uniform acceleration of the disk along a strai
line. The first solution identifies via-points and interpolates sin
soids to generate approximately constant acceleration trajecto
The trajectories conserve potential energy and suggest fur
analysis on the basis of potential energy. The second solutio
optimal in the sense that it minimizes a component of the kine
energy. It also renders the moment of inertia of the disk invari
with orientation and provides greater freedom in trajectory des
A dynamic model of the system is developed in Section 4 a
uniform acceleration maneuvers that conserve potential energy
once again investigated. The variable potential energy trajecto
are studied in Section 5. Similar to the static model, the trajec
ries conserving potential energy are limacons, and identical for
unbalance masses. The variable potential energy trajecto
which are not limacons, are described by five constants of mo
and present the most general solution. In Section 6 we presen
optimal approach to tracking an acceleration profile along w
simulation results. Section 7 provides concluding remarks.

e
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92,
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2 Description of Propulsion Mechanism
A schematic description of the self-propelled disk is shown

Fig. 1. The radial lines from center of the disk to the circumf
ence represent spokes, each of which carries a lumped mass
masses, denoted bym1 , m2 , m3 , are of equal magnitude,m, and
slide along their respective spokes. The angular position of m
m1 is measured counter clockwise from the negativez-axis, and is
denoted byu. The massesm2 , m3 , are located 120 deg and 24
deg apart with respect tom1 . The radial positions of the masse
are denoted byr 1 , r 2 , andr 3 , respectively. For ease of explan
tion, we divide the disk area into two distinct halves: the ‘‘leadi
half’’ and the ‘‘lagging half.’’ The gravitational force of a mass i
the leading half contributes positive moment and causes the
to accelerate; the gravitational force of a mass in the lagging
causes the disk to deccelerate. Now consider a static model o
mechanism, which ignores the inertia forces of the unbala
masses. For this model, which is valid for small velocities a
accelerations, we have

I ~u!ü52mg@r 1 cosu1r 2 cos~u1120°!

1r 3 cos~u2120°!# (1)

where,I (u) is the mass moment of inertia of the entire assem
about the instantaneous center of rotation,O, which can be ex-
pressed as

I ~u!,I ds13mR21m~r 1
21r 2

21r 3
2!

12mR@r 1 sinu1r 2 sin~u1120°!

1r 3 sin~u2120°!#. (2)

It is implicitly assumed in Eq.~1! that the friction force between
the disk and the ground prevents the disk from slipping. In
~2!, I ds represents the combined moment of inertia of the disk
spokes aboutO. The unbalance masses are constrained by
relation 0<r 1 ,r 2 ,r 3<R, whereR is the length of each spoke.

We designed our mechanism with three masses since fe
masses cannot maintain constant acceleration. For a single m
this is evident from the equation of motion

r 152
I 1~u!ü

mgcosu
, I 1~u!,I ds1m~R21r 1

212r 1R sinu!

which indicates that constantü cannot be achieved withr 1 satis-
fying 0<r 1<R. For two masses, on spokes that are separate
an anglea, the equation of motion has the form

I 2~u!ü52mg@r 1 cosu1r 2 cos~u1a!#

I 2~u!,I ds12mR21m~r 1
21r 2

2!12mR@r 1 sinu1r 2 sin~u1a!#.

On simplification, we have

r eq52
I 2~u!ü

mgcos~u1c!
r eq,Ar 1

21r 2
212r 1r 2 cosa,

Fig. 1 The disk with reciprocating masses
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c,arctanS r 2 sina

r 11r 2 cosa D
where 0<c<a. Since (u1c) will assume all angular positions
during motion,r eq cannot remain bounded for a constant acc
eration. Therefore, two masses will not suffice. In the next th
sections, we will show that three masses equispaced in ang
orientation, as shown in Fig. 1, is capable of maintaining cons
acceleration.

3 Preliminary Analysis Using Static Model

3.1 An Approximate Solution. In this section we presen
an approximate solution to the constant acceleration mane
problem. We use the static model in Eq.~1! but assume the mo
ment of inertia of the system to be constant. We divide the lead
half into three phases, shown in Fig. 2. The presence of a ma
phase 1 necessitates the second mass to be present in phase
the third mass in the lagging half. The presence of a mass in p
2 necessitates the other two masses to be confined to the lag
half. Now consider the configuration in Fig. 3 where massm1 is
on the boundary between phase 1 and phase 2. We use this
figuration to determine the maximum acceleration of the disk t
can be maintained for all values ofu. To achieve maximum ac-
celeration in this configuration, we must haver 15R and r 350.
The instantaneous value ofr 2 is not important sincem2 does not
have a moment arm. The maximum acceleration in this confi
ration can be obtained from Eq.~1!, as follows:

I ü52mgRcos 150°.

To maintain this acceleration for all values ofu, the mass posi-
tions should satisfy

R cos 150°5r 1 cosu1r 2 cos~u1120°!

1r 3 cos~u2120°!.

Fig. 2 Different phases in the leading half of the disk

Fig. 3 A particular configuration of the reciprocating masses
JANUARY 2001, Vol. 68 Õ 59
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In the neighborhood ofu5150°, we haver 3'0 and r 1'R.
Hence,r 2 can be obtained as

r 2~150°!5 lim
u→150°

R
~cos 150°2cosu!

cos~u1120°!
5

R

2
.

A similar analysis can be carried out atu5210° wherem1 is
between phase 2 and phase 3. At this configuration, wherr 1
5R, andr 250, we can show thatr 3 satisfiesr 35R/2.

Since the spokes are symmetrically located, we assume
mass trajectories to be identical with 120 deg phase shift from
another. The above analysis then implies that there are six
points on the trajectory, namely

r 15H 0 for u530°,230°

R/2 for u590°,270°

R for u5150°,210°

By fitting sinusoids between these via-points, the approximate
lution is obtained as

r 1~u!55
0 for 230°<u<30°

R@12cos~u230°!# for 30°<u<90°

2R cos~u130°! for 90°<u<150°

R for 150°<u<210°

2R cos~u230°! for 210°<u<270°

R@12cos~u130°!# for 270°<u<330°.

(3)

The trajectories ofr 2 and r 3 can be simply obtained as

r 2~u!5r 1~u1120°!, r 3~u!5r 1~u2120°!. (4)

For example,r 2(u) can be expressed as

r 2~u!55
0 for 210°<u<270°

R~11sinu! for 270°<u<330°

2R cos~u1150°! for 230°<u<30°

R for 30°<u<90°

R sinu for 90°<u<150°

R@12cos~u1150°!# for 150°<u<210°.

The following observations can now be made for the appro
mate solution. The trajectories of the masses are piecewise sm
with first derivative continuity. Also, they satisfy

r 1 sinu1r 2 sin~u1120°!1r 3 sin~u2120°!50 (5)

which implies conservation of potential energy. The moment
inertia of the system is, however, not constant. From Eq.~2!, it
can be expressed as

I a5I ds13mR21m~r 1
21r 2

21r 3
2!.

From the above equation it can be shown thatI a is comprised of
a constant term and a periodic term. Therefore, the angular a
eration of the disk

ü52
mgRcos 150°

I a
'0.866

mgR

I a
(6)

is not constant, but varies periodically. To complete the analy
we note that a lower magnitude of acceleration can be gener
by scaling down the trajectories ofr 1 , r 2 , and r 3 . This can be
done by replacingR in Eq. ~3! with R* , 0<R* <R.

3.2 An Optimal Solution. In this section, we seek an opt
mal solution; one optimal in some sense of energy consumpt
We impose the constraint that the potential energy is conse
and therefore Eq.~5! holds. This condition, which was satisfied b
60 Õ Vol. 68, JANUARY 2001
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the approximate solution, is convenient and reduces the numb
variable terms in the moment of inertia expression in Eq.~2!.

By differentiating Eq.~5! with respect tou and substituting Eq.
~1!, we obtain

r 18 sinu1r 28 sin~u1120°!1r 38 sin~u2120°!5K, K,
I ü

mg
(7)

where r 18 , r 28 , and r 38 , are the derivatives ofr 1 , r 2 , and r 3 ,
respectively, with respect tou, I represents the moment of inerti
of the system given by Eq.~2!, and ü denotes the specified con
stant acceleration of the disk. We now make the assumption thI
is constant. In the ensuing analysis, we will show thatI can be
maintained at a constant value. By differentiating Eq.~1! with
respect tou and substituting Eq.~5!, we get

r 18 cosu1r 28 cos~u1120°!1r 38 cos~u2120°!50. (8)

Using Eqs.~7! and~8!, we can expressr 28 andr 38 in terms ofr 18 as
follows:

r 285r 182
2

)
K cos~u2120°!

(9)

r 385r 181
2

A3
K cos~u1120°!

whereK was defined in Eq.~7!. With the objective of designing
the optimal trajectory, we now define the cost functional

J5E
0

2p

L du, L,
1

2
m~r 18

21r 28
21r 38

2! (10)

where the integrand represents the pseudo-kinetic energy, o
kinetic energy that accounts for the motion of the masses in
reference frame of the spokes. With respect to an inertial fra
the masses will undergo both translation and rotation that
depend on the instantaneous angular velocity of the disk. Du
constant acceleration maneuvers, the angular velocity of the
will increase linearly with time and the true kinetic energy will b
a function of time. To investigate optimal trajectories that a
functions ofu, rather than bothu and time, we choose the cos
functional as the integral of the pseudo-kinetic energy.

To proceed with the optimization, we substitute the expressi
for r 28 and r 38 into Eq. ~9! to rewrite the integrand in Eq.~10! as
follows:

L5
1

2
mS 3r 18

21
4

3
K2@cos2~u2120°!1cos2~u1120°!#

24Kr 18 sinu D .

Using the Euler-Lagrange equation~@11#! from calculus of varia-
tions

d

du S ]L

]r 18
D 2

]L

]r 1
50

for the stationary value ofJ, we obtain the trajectory ofr 1 as
follows:

r 15C1u2
2

3
K cosu1C2

where C1 and C2 are constants of integration. Sincer 1 has to
satisfy 0<r 1<R, C1 must be zero, andC2 andK must lie in the
shaded region of Fig. 4. The optimal trajectory will therefore b
limacon, of the form
Transactions of the ASME
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r 15C22
2

3
K cosu. (11)

The optimal trajectories ofr 2 , r 3 , can be derived using Eq.~4!.
The moment of inertia, which was assumed constant, can now
shown to be constant. From Eq.~2! we can show that

I o5I ds1mS 3R213C2
21

2

3
K2D .

The constant acceleration of the disk can therefore be express

ü5
mgK

I o

where20.75R<K<0.75R, limits the maximum value of accel
eration toü50.75mgR/I o . The feasible range of values ofK can
be verified from Fig. 4.

Unlike the approximate solution, the optimal solution results
constant acceleration of the disk. The optimal solution is a
smooth whereas the approximate solution is piecewise sm
with first derivative continuity. A single parameterR* describes
the family of approximate solutions. The particular solution whe
R* 5R is shown in Eq.~3!. Two parameters,C2 andK, describe
the family of optimal solutions. Clearly, the optimal solution pr
vides greater freedom in trajectory selection. Despite differen
the trajectories for the approximate solution and the optimal s
tion, shown in Fig. 5, are strikingly similar.

Fig. 4 Shaded region indicates feasible parameter values for
the solution in Section 3.2

Fig. 5 Comparison of the approximate and optimal solutions
for a disk of unity radius
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4 Dynamic Model: Constant Potential Energy Maneu-
vers

4.1 Lagrangian Formulation. In this section we perform a
detailed analysis of the problem using a dynamic model. To
tain Lagrange’s equations, we first express the kinetic energ
the system as

T5
1

2
Idsu̇

21
1

2
m~v1

21v2
21v3

2!

wherev1 , v2 , andv3 , are the velocities of massesm1 , m2 , and
m3 , respectively, and given by the relations

v1
25R2u̇21 ṙ 1

21r 1
2u̇222Ru̇ ṙ 1 cosu12Rr1 u̇2 sinu

v2
25R2u̇21 ṙ 2

21r 2
2u̇222Ru̇ ṙ 2 cos~u1120°!

12Rr2u̇2 sin~u1120°!

v3
25R2u̇21 ṙ 3

21r 3
2u̇222Ru̇ ṙ 3 cos~u2120°!

12Rr3u̇2 sin~u2120°!.

In the kinetic energy expression above, it is implicitly assum
that the friction force between the disk and the ground preve
the disk from slipping. The potential energy of the system is
pressed as

V5mg@r 1 sinu1r 2 sin~u1120°!1r 3 sin~u2120°!#. (12)

Using the expressions for kinetic and potential energi
Lagrange’s equation~@12#! for the generalized coordinateu can be
written as

I dsü13mR2ü1mü~r 1
21r 2

21r 3
2!12mu̇~r 1ṙ 11r 2ṙ 21r 3ṙ 3!

2mR~ r̈ 1 cosu1 r̈ 2 cos~u1120°!1 r̈ 3 cos~u2120°!!

12mRü~r 1 sinu1r 2 sin~u1120°!

1r 3 sin~u2120°!!

12mRu̇~ ṙ 1 sinu1 ṙ 2 sin~u1120°!

1 ṙ 3 sin~u2120°!!1mRu̇2~r 1 cosu

1r 2 cos~u1120°!1r 3 cos~u2120°!!1mg~r 1 cosu

1r 2 cos~u1120°!1r 3 cos~u2120°!!50. (13)

The approximate and optimal solutions in Section 3 indicate t
constant angular acceleration of the disk can be generated by
riodic trajectories of the unbalance masses. This motivates u
seek periodic solutions from the dynamic analysis as well.
assumer 1 , r 2 , andr 3 to be periodic functions of the form

r 15R f1~u!, r 25R f2~u!, r 35R f3~u!,

0< f 1~u!, f 2~u!, f 3~u!<1 (14)

where f 1 , f 2 , f 3 are dimensionless variables. In the sequel
will establish that there exists a class of periodic trajectories
r 1 , r 2 , and r 3 , that impart constant angular acceleration to t
disk. From an implementation point of view, radial forces pr
vided by suitable actuators will guarantee that the unbala
masses track their periodic trajectories. Since our main objec
is to investigate the effect of the periodic trajectories on the ov
all motion of the disk, we do not pursue further analysis of t
radial forces. One can easily determine these radial forces or
trol inputs from the right-hand sides of Lagrange’s equations
the generalized coordinatesr 1 , r 2 , andr 3 . To continue with our
analysis, we use Eq.~14! to rewrite Eq.~13! in the form

a~u!ü1b~u!u̇21c~u!50
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a~u!5I ds1mR2@31 f 1
21 f 2

21 f 3
212~ f 1 sinu

1 f 2 sin~u1120°!1 f 3 sin~u2120°!!

2~ f 18 cosu1 f 28 cos~u1120°!

1 f 38 cos~u2120°!!#

b~u!5mR2@2~ f 1f 181 f 2f 281 f 3f 38!2~ f 19 cosu1 f 29 cos~u1120°

1 f 39 cos~u2120°!!12~ f 18 sinu1 f 28 sin~u1120°!

1 f 38 sin~u2120°!!1~ f 1 cosu1 f 2 cos~u1120°!

1 f 3 cos~u2120°!!#

c~u!5mgR~ f 1 cosu1 f 2 cos~u1120°!1f3 cos~u2120°!!
(15)

For a constant acceleration maneuver,ü5l1 , we will have u̇
5l1t1l2 , wherel1 and l2 are constants. We can then arg
that b(u)50, or elseü will increase with time according to the
relation

ü52
b

a
~l1t1l2!22

c

a
. (16)

From Eqs.~15! one can readily show thatb(u)50 implies

~ f 1
21 f 2

21 f 3
2!1~ f 1 sinu1 f 2 sin~u1120°!

1 f 3 sin~u2120°!!

2~ f 18 cosu1 f 28 cos~u1120°!

1 f 38 cos~u2120°!!5a0 (17)

where a0 is a constant of integration. Apart fromb(u)50, we
also need (c/a) to be constant, or bothc anda to be constant, for
a constant acceleration maneuver.

4.2 Uniform Acceleration With Constant Potential Energy
Consider the case where bothc and a are constant. Rewriting
a(u) in Eq. ~15! as

a~u!5I ds1mR2@31a01 f 1 sinu1 f 2 sin~u1120°!

1 f 3 sin~u2120°!# (18)

and from the expression ofc(u) in Eq. ~15!, we get the identities

f 1 cosu1 f 2 cos~u1120°!1 f 3 cos~u2120°!5a1 (19)

f 1 sinu1 f 2 sin~u1120°!1 f 3 sin~u2120°!5a2
(20)

wherea1 anda2 are constants. From Eqs.~12!, ~14!, and~20! it
is established that constant values ofc and a lead to constant
acceleration maneuvers with potential energy conservation.
proceed further, we differentiate Eq.~19! and substitute Eq.~20!
to get

f 18 cosu1 f 28 cos~u1120°!1 f 38 cos~u2120°!5a2 .

Substituting this result and Eq.~20! into Eq. ~17!, we get

~ f 1
21 f 2

21 f 3
2!5a0 . (21)

Using Eqs.~19!, ~20!, and~21!, the following expressions for the
dimensionless variablesf 1 , f 2 , and f 3 can be obtained:

f 15X cos~u2f!1Y X,~2/3!$a1
21a2

2%1/2

f 25X cos~u2f1120°!1Y Y,~1/3!$3a022~a1
21a2

2!%1/2

(22)

f 35X cos~u2f2120°!1Y f,arctan~a2 /a1!

whereX, Y, f, are constants. From the expressions ofX andY it is
clear that both were chosen to be positive square roots. This
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not cause any loss of generality and is explained as follows. I
spective of the sign ofX, X cos(u2f) takes both positive and
negative values. To satisfy the constraintf 1>0 in Eq. ~14!, Y
must therefore be positive. A change in sign ofX is equivalent to
a phase shift inf by 180 deg. ThereforeX is arbitrarily chosen to
be positive. The above analysis confirms thatf 1 , f 2 , f 3 , and ac-
cordingly r 1 ,r 2 ,r 3 , have identical trajectories, shifted in phase

The trajectories in Eq.~22! are limacons, similar to those ob
tained in Section 3.2. This is surprising since the analysis in S
tion 3.2 was carried out with a static model whereas the comp
dynamic model was employed in this section. The main differe
between the two trajectories are in the number of defining par
eters. The limacons in Section 3.2 are defined by two parame
C2 andK, as seen from Eq.~11!. In this section the limacons ar
defined by three parameters, namelyX, Y, andf. The advantage
of having three independent parameters is that any initial confi
ration of the three masses can determine the trajectories and
corresponding acceleration. From Eqs.~15!, ~16!, ~19!, and ~20!,
the disk acceleration can be expressed as

ü52F mgRa1

I ds1mR2~31a01a2!G (23)

wherea0 ,a1 ,a2 can be expressed in terms of trajectory para
etersX, Y, f as follows:

a0,1.5X213.0Y2, a1,1.5X cosf, a2,1.5X sinf.
(24)

While arbitrary initial conditions can uniquely define a traje
tory, not all trajectories will satisfy the physical constraints of E
~14!. For feasibility,X,Y must lie in the shaded region, shown
Fig. 6. This is quite similar to the constraint imposed on the
rameters of the trajectory in Section 3.2, shown in Fig. 4.

Although initial values off 1 , f 2 , f 3 , andu uniquely define the
trajectory parameterized bya0 ,a1 ,a2 , or X,Y,f, and uniquely
define the acceleration of the diskü, the converse is not true: A
given acceleration of the disk can be generated through var
trajectories.

4.3 Effect of Variation of Path Parameters

Effect of Varying Phase Angle.Using Eqs.~23! and ~24!, the
disk acceleration can be written as

ü52F 1.5mgRXcosf

I ds11.5mR2~21X sinf1X212Y2!G5
b cosf

m1sinf
(25)

whereb andm are constants, given by the relations

b,2
g

R
, m,

I ds11.5mR2~21X212Y2!

1.5mR2X
. (26)

From the expression ofm, and feasible values ofX in Fig. 6, it can
be shown that the denominator in Eq.~25! is always positive. The

Fig. 6 Shaded region indicates feasible parameter values for
the solution in Section 4.2
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sign of ü therefore depends on the sign of cosf, or X cosf since
X is always positive. Specifically,ü is positive ifX cosf is nega-
tive and vice versa. With Eqs.~19! and~24! it can be established
that thez-coordinate of the center of mass, relative to the cente
the disk, is located at

zcm5
R

3
@ f 1 cos~p1u!1 f 2 cos~p1u1120°!

1 f 3 cos~p1u2120°!#

52
R

3
a152

R

2
X cosf.

The above equation implies that the magnitude and direction
acceleration depends primarily on thez-coordinate of the center o
mass, relative to the center of disk.

The rolling disk can acquire a range of acceleration by vary
phase anglef. From Eq.~25!, the maximum and minimum value
of the acceleration can be shown to be

ü5H ümax if f5p1arcsin~1/m!

ümin if f52arcsin~1/m!.
(27)

Of course, motion with zero acceleration or constant velocity
quiresf56p/2. From an implementation point of view, the rol
ing disk can changef during its motion by suppressing the mo
tion of the masses for an appropriate interval of time.

Effect of Varying ParametersX and Y. Each point in the
shaded region of Fig. 6 corresponds to a certain trajectory of
disk; each of these trajectories has a certain acceleration. Cle
a variation inX andY is expected to provide a range of accele
tions. By treatingf as constant, we partially differentiateü in Eq.
~25! with respect toX andY. Equating these expressions to ze
the maximumü is observed to occur at the following coordinat

X5A2~11I ds/3mR2!, Y50

independent of the value off. Unfortunately, this coordinate lie
outside the shaded region in Fig. 6. Since the above coordina
the only location whereü is an extremum, we conclude that th
maximum feasibleü occurs at a point, or a set of points on th
boundary of the shaded region. Through numerical simulation
determined the maximum to occur at (X,Y)5(0.5,0.5). Combin-
ing this result with the result in Eq.~27!, we conclude that the
trajectories that produce maximum and minimum acceleration

ü5H ümax if f 1520.5 cos@u2arcsin~1/m̄ !#10.5

ümin if f 150.5 cos@u1arcsin~1/m̄ !#10.5
,

m̄,
I ds14.125mR2

0.75mR2

wherem̄, obtained from Eq.~26!, is the value ofm evaluated at
X5Y50.5. Instead of numerical simulation, the above result
maximum acceleration can also be obtained through constra
optimization.

5 Dynamic Model: Variable Potential Energy Maneu-
vers

5.1 Uniform Acceleration With Variable Potential Energy
It was shown in Section 4.1 that constant acceleration maneu
require (c/a) to be constant. The analysis in Sections 4.2 and
was carried out assuming bothc anda as constants, which leads t
conservation of potential energy. In an effort to generalize
results, we investigate the case of varying potential energy in
section. We treatc anda as variables whose ratio is constant. W
begin our analysis with the expression for the potential ene
Using Eqs.~12! and ~14!, V can be expressed as
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V5mgR@ f 1 sinu1 f 2 sin~u1120°!1 f 3 sin~u2120°!#.

It can be shown thatV satisfies2mgR<V<mgR. In compliance
with these limits and without loss of generality, we consider
sinusoidal variation inV, given by the relation

V5mgR@A11B1 sin~u2c!#

whereA1 , B1 , andc are constants. By comparing the above tw
equations, we can write

f 1 sinu1 f 2 sin~u1120°!1 f 3 sin~u2120°!

5A11B1 sin~u2c!. (28)

We haveb(u)50 for constant acceleration maneuvers. Using
expressions forc(u) anda(u) in Eqs.~15! and~18!, the equation
of motion in Eq.~16! reduces to the form

ü$I ds1mR2@31a01 f 1 sinu1 f 2 sin~u1120°!

1 f 3 sin~u2120°!#%

52mgR@ f 1 cosu1 f 2 cos~u1120°!1 f 3 cos~u2120°!#.
(29)

Substituting Eq.~28! in Eq. ~29!, we get

ü$K11K2@A11B1 sin~u2c!#%5 f 1 cosu1 f 2 cos~u1120°!

1 f 3 cos~u2120°!

K1,2
I ds1mR2~31a0!

mgR
, K2,2

R

g
. (30)

For a constant magnitude of acceleration,ü5G, we can then
write

f 1 cosu1 f 2 cos~u1120°!1 f 3 cos~u2120°!

5A21B2 sin~u2c!

A25G~K11A1K2!, B25GB1K2 . (31)

Using Eqs.~28! and ~31!, Eq. ~17! can now be written as

f 1
21 f 2

21 f 3
25a01B2 cos~u2c! (32)

where it is obvious thata0>uB2u. From Eqs.~28!, ~31!, and~32!,
f 1 , f 2 , and f 3 can be solved as follows:

f 15
2

3
P16

1

3
A3~a01B2 cos~u2c!!22S

f 25
2

3
P26

1

3
A3~a01B2 cos~u2c!!22S

f 35
2

3
P36

1

3
A3~a01B2 cos~u2c!!22S

whereS andPj , j 51,2,3, are defined as

S,@A11B1 sin~u2c!#21@A21B2 sin~u2c!#2

Pj,@A11B1 sin~u2c!#sin@u1~ j 21!120°#

1@A21B2 sin~u2c!#cos@u1~ j 21!120°#.

It can be verified from the above equation that (P11P21P3)
50. Using this result the common term in the expressions off 1 ,
f 2 , f 3 can be shown to be (f 11 f 21 f 3)/3. It immediately follows
that the nontrivial solution forf 1 , f 2 , f 3 is

f 15
2

3
P11

1

3
A3~a01B2 cos~u2c!!22S

f 25
2

3
P21

1

3
A3~a01B2 cos~u2c!!22S (33)
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f 35
2

3
P31

1

3
A3~a01B2 cos~u2c!!22S.

From Eqs.~22! and~33! it can be seen that trajectories conservi
potential energy are identical for the three masses except fo
120 deg phase shift; this is not true for variable potential ene
Also, the trajectories in Eq.~22! are limacons, described by thre
parameters. The trajectories in Eq.~33!, which are not limacons
require five parameters for their description. These parameter
A1 , B1 , G, c, anda0 .

5.2 Motion of the Center of Mass. The coordinates of the
center-of-mass of the system can be written as

zcm52
R

3
@ f 1 cosu1 f 2 cos~u1120°!1 f 3 cos~u2120°!#

ycm5
R

3
@ f 1 sinu1 f 2 sin~u1120°!1 f 3 sin~u2120°!#.

Using these relations, Eq.~29! can be written as

ü$I ds1mR2~31a0!13mRycm%53mgzcm .

For a constant accelerationü5G, this reduces to

ycm5
g

RG
zcm1

g

3
K1 (34)

whereK1 was defined in Eq.~30!. Also note that the distance o
the center-of-mass from the disk center is constrained by the
lation

ycm
2 1zcm

2 <~R/3!2. (35)

The proof of the above relation is simple and left to the read
Some observations on the motion of the disk, evident from E
~34! and ~35!, are now discussed with the help of Fig. 7.

1. Straight lines with different slopes represent different m
nitudes~G! of acceleration. A line with a positive slope represen
acceleration and a line with a negative slope represents dece
tion. A horizontal line in Fig. 7 represents constant velocity m
tion.

2. A feasible trajectory of the disk requires the straight line
Eq. ~34! to pass through the circular region defined by Eq.~35!.
However, this is not sufficient to guarantee that the physical c

Fig. 7 A geometric interpretation of the motion of the center of
mass
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straints, 0< f 1 , f 2 , f 3<1, will be met. This is true for the sam
reason the center-of-mass may remain bounded when indivi
mass positions become unbounded.

3. Sincea0 is positive, which can be shown from Eq.~32!, the
intercept of the straight line in Eq.~34! on they-axis is negative,
and outside the circle defined by Eq.~35!. This confirms that the
range of acceleration of the disk, determined by the slope of
line, is finite.

4. A feasible trajectory is described by sinusoidal variation
both center-of-mass coordinates,ycm andzcm . This, evident from
Eqs.~28! and~31!, translates to the center-of-mass position osc
lating along a straight line, while remaining confined to the circ
of radiusR/3 in Fig. 7. In contrast, when the potential energy
conserved,ycm remains stationary. This implies that the center-o
mass position will remain stationary.

5. From the range ofX in Fig. 6, namelyX<0.5R, and expres-
sions fora1 ,a2 , in Eq. ~24!, we have20.75<a1 ,a2<0.75. Us-
ing Eqs. ~19! and ~20! we can therefore show thatycm ,zcm are
individually constrained to lie between6R/4. This indicates that
for constant potential energy maneuvers the straight line in
~34! must intersect, or be tangential to, a smaller circle of rad
R/4. This indicates that the variable potential energy case ho
the promise for higher acceleration.

6 Tracking an Acceleration Profile

6.1 An Optimal Approach to Tracking Acceleration. In
this section we present an optimal method for tracking an ac
eration profile. We compute discrete changes in acceleration
small intervals of time and seek to determine changes in trajec
parameters that minimize the cost functional

J5E
0

2p

~D f 1!2 du.

The basic trajectories can be chosen to be the limacons in Eq.~22!
or the more complex forms in Eq.~33!. For simplicity, we choose
the limacons which are described by fewer parameters. Tho
the limacons conserve potential energy, we do not expect the
tential energy to remain conserved as we track an accelera
profile. This is true since the limacon parameters will continua
change during acceleration tracking. While a different cost fu
tion could have been chosen, the cost function above promise
minimize the overall change in the shape of the trajectory, wh
is identical for all three masses. On differentiatingf 1 in Eq. ~22!,
we obtain

D f 15cos~u2f!DX1X sin~u2f!Df1DY. (36)

Substituting Eq.~36! into the expression ofJ, we get

J5pDX21p~XDf!212pDY2.

We now rewrite Eq.~23! as

ü5
ba1

n1a21a0
, n,31

I ds

mR2 . (37)

A change inü can therefore be expressed in terms of change
path parameters, as follows:

Dü5S ü

a1
DDa12S ü2

ba1
DDa22S ü2

ba1
DDa0 . (38)

Substituting Eqs.~24! and ~38! into the expression ofJ, we get

J5
4p

9
~Da1

21Da2
2!

1
p

2

$~3bü24a1ü2!Da12~314a2!ü2Da223bDüa1%
2

@3a022~a1
21a2

2!#
.
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By computing the partial derivatives ofJ with respect toa1 ,a2 ,
and equating them to zero, we obtain optimal change in p
parametersDa1 ,Da2 ,

Da15
9g1g2g4

8p19g1~g2
21g3

2!
, Da252

9g1g3g4

8p19g1~g2
21g3

2!
,

(39)

whereg1 , g2 , g3 , andg4 are defined as

g15
p

3a022~a1
21a2

2!
g35S 11

4

3
a2D

g25S b

ü
2

4

3
a1D g45

bDüa1

ü2
.

Though it may seem thatDa1 grows unbounded whenü is zero,
this is not the case. By integrating the expression forDa1 , we can
show that the following relation is true:

1

a1

5sFb2

ü2
1S 12

8

3
n D G 1/2

2
4b

~328n!ü

wheres is a constant of integration, andb andn are constants tha
have been defined in Eqs.~26! and ~37!, respectively. Clearly, as
ü tends to zero,a1 tends to zero andDa1 remains finite.

The optimal change in parametera0 , namelyDa0 , can now be
computed from Eqs.~38! and~39!. The changes in parametersa1 ,
a2 ,a0 , can be translated into equivalent changes inX,Y,f, using
the following equation:

S DX
DY
Df

D 5
2

3 S cosf 0 X sinf

sinf 0 X cosf

2X 4Y 0
D 21S Da1

Da2

Da0

D (40)

which was derived from Eq.~22!. The matrix in Eq.~40! becomes
singular when eitherX or Y is zero. This should not be of concer
sinceX50 andY50 are limiting values for a feasible trajectory
as evident from Fig. 6. The matrix is also singular whenX51 and
f5p/4. This point clearly lies outside the range of feasible p
rameter values and should also be of no concern. After compu
the changes inX,Y,f, the change in the trajectory ofm1 can be
computed from Eq.~36!. The changes in trajectories ofm2 andm3
can be computed similarly.

6.2 Simulation Results. In this section we present simula
tion results of the disk tracking a sinusoidal acceleration profi
The initial angle of the disk in radians, and position of the thr
masses in dimensionless variables are given as

u~0!50.8, f 1@u~0!#50.7, f 2@u~0!#50.4, f 3@u~0!#50.3.

The values ofa0 ,a1 ,a2 are first computed using Eqs.~19!, ~20!,
and ~21!. Subsequently, the initial acceleration of the disk is o
tained using Eq.~23! as ü(0)523.28 rad/s2. For our simulation,
we choose the acceleration profile

ü522.018.5 sin~0.5t2z! (41)

with the proper choice ofz that satisfies the initial condition
ü(0)523.28 rad/s2. We also chooseb,2(g/R)52100 in SI
units, andn,31(I ds /mR2)54.5. The simulation is carried ou
over 60 seconds using a time-step of 0.001 second. At each t
step the trajectory parametersX,Y, are verified to lie in the shade
region of Fig. 6. This guarantees that physical constraints are
violated.

The simulation results are shown in Figs. 8 and 9. Figure 8
plot of trajectory parametersX,Y, andf for the acceleration pro-
file in Eq. ~41!. As expected, the trajectory off has the same
frequency as that of the acceleration profile. The trajectory ofX is
more interesting and has two peaks in every cycle of accelera
Journal of Applied Mechanics
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Since X represents the radial distance of the center-of-mass
assumes maximal values for both the maximum and minim
acceleration. However, since magnitudes of the maximum
minimum acceleration are different~6.5 rad/s2 and210.5 rad/s2,
respectively!, the peaks differ in magnitude. The shape of t
limacon in Eq.~22!, which changes as a function of the trajecto
parameters, is shown in Fig. 9 for two specific instants of tim
t1514.0 seconds andt2534.9 seconds. At these instants of tim
the limacon is seen to have the following parametric represe
tions:

f 1~u!5H 0.229 cos~u2114.8°!10.467 for t5t1

0.435 cos~u224.3°!10.448 for t5t2.

7 Conclusion
This paper investigates a self-propulsion mechanism compr

of three unbalance masses for a vertically upright rolling d
constrained to move along a straight line path. It is shown t
trajectories of the unbalance masses can be designed to prop
disk with a wide range of accelerations. It is also shown that
disk can track an acceleration profile while minimizing an app
priate cost function. In the preliminary analysis, where a sta
model was used, uniform acceleration maneuvers assumed co

Fig. 8 Variation of trajectory parameters during a sinusoidal
variation of acceleration

Fig. 9 Normalized trajectories of the unbalance masses at two
specific instants of time
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vation of potential energy. The potential energy plays an imp
tant role throughout the analysis, and hence both constant
variable potential energy cases were considered with the dyna
model. Under conservation of potential energy, the dyna
model results in trajectories similar to those obtained from
static model; the results obtained from the dynamic model
however, more general. With both models, the trajectories of
unbalance masses are identical limacons with phase shifts of
deg. This is not true for the case of variable potential energy
this most general case, the center-of-mass oscillates alon
straight line while the disk undergoes constant acceleration.
all the cases considered, it was observed that a prescribed a
eration could be achieved using multiple trajectories or multi
initial conditions; a set of initial conditions, however, unique
defines the trajectories and the acceleration. Some simulatio
sults were also presented in this paper. For a prescribed sinus
acceleration profile, minimum variation in trajectory paramet
were simulated.
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High-Frequency Low-Loss
Ultrasonic Modes
in Imbedded Bars
The dispersion relationships of a system comprising a circular bar imbedded in a
medium having a lower acoustic impedance than the bar have been predicted. A g
study of such systems has been undertaken, motivated by a particular interest in th
of a circular steel bar imbedded in cement grout which has application to the inspe
of tendons in post-tensioned concrete bridges; measurements to confirm the pred
have been carried out for this case. The attenuation dispersion curves show a ser
attenuation minima at roughly equal frequency spacing. The attenuation minima occ
the same frequencies as energy velocity maxima and they correspond to points at
the particle displacements and energy of the particular mode are concentrated tow
the center of the bar so leakage of energy into the imbedding medium is minimized
attenuation at the minima decreases with increasing frequency as the energy be
more concentrated at the middle of the bar, until the material attenuation in the
becomes a significant factor and the attenuation at the minima rises again. Fo
particular case of a steel bar in cement grout, the minimum attenuation is reached
frequency-radius product of about 23 MHz-mm. The frequency-radius product at w
the minimum attenuation is reached and the value of the minimum attenuation
increase as the acoustic impedance of the imbedding medium increases.
@DOI: 10.1115/1.1347995#
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1 Introduction
It is frequently necessary to inspect a long length of bar or p

imbedded in a surrounding fluid or solid medium. Examples
clude pipes buried in soil, fibers imbedded in a polymer ma
and steel tendons buried in grout or concrete. Guided acou
waves offer a potentially attractive solution to these nondest
tive evaluation~NDE! problems as they can be excited at o
point on the system~often at an end! and will then propagate
along the bar or pipe, which acts as a waveguide.

Propagation distances of many tens of meters can readily
obtained in steel pipes or bars in air~@1–6#! since in this case the
attenuation is predominantly controlled by the material atten
tion of the steel, which is relatively low; the leakage into t
surrounding air is minimal. When the waveguide is surrounded
a fluid, leakage of energy into the fluid by radiation of longitud
nal waves is possible when the phase velocity of the guided m
exceeds the phase velocity of longitudinal waves in the flu
When the waveguide is imbedded in a solid, leakage by b
longitudinal and shear waves can occur which leads to very h
attenuation rates, especially when the acoustic impedances o
waveguide and the surrounding solid are similar~@7#!.

An enormous amount of work has contributed to our curr
understanding of cylindrical wave propagation. The following
view highlights some key papers, but it is far from comprehe
sive. Cylindrical wave propagation problems were first stud
numerically in the late 19th century. Pochhammer@8# and Chree
@9# were the first researchers to investigate the propagation
guided waves in a free bar mathematically, and their names
still associated with the equation that describes the modes
solid cylinder. However, most of the applications of cylindric
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will be accepted until four months after final publication of the paper itself in
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wave propagation have occurred much more recently. In the
20th century, a significant amount of research was performed
the modes of solid bars. Much of this work concentrated on
use of rods as acoustic waveguides for use in delay lines
could be used in electronic devices, such as radar. In 1943, H
son used shell approximations to study the dispersive nature o
fundamental flexural mode in a solid cylinder~@10#!. The longitu-
dinal modes of a bar were first examined by Davies in 19
~@11#!. Later work by researchers such as Pao and Mind
@12,13#, Onoe et al.@14#, and Meeker and Meitzler@15# fully de-
veloped all of the branches of the complete three-dimensio
problem of a solid circular cylinder in vacuum. The dispersi
curves for a hollow isotropic cylinder were definitively treated
Gazis in 1959~@16#!. Fitch ~@17#! matched Gazis’ predictions fo
axially symmetric and nonsymmetric wave propagation with e
perimental data. Later researchers such as Kumar@18,19# have
examined the effect of fluid filling on wave propagation in cyli
ders. In 1965, Mirsky expanded Morse’s work~@20#! on axisym-
metric wave propagation in transversely isotropic solid cylind
and Gazis’ exact nonaxisymmetric isotropic wave propagation
lution ~@16#! so that cylindrical wave propagation in transverse
isotropic materials could be studied~@21#!. Subsequently, severa
other authors have examined propagation in transversely isotr
rods and cylinders, for example Xu and Datta@22#, Dayal @23#,
Nagy @24#, and Berliner and Solecki@25#.

Leaky cylindrical systems have been much more difficult
model than their free counterparts. Much of the difficulty com
from the need to calculate complex Bessel functions, which u
recently were not readily available but which can now be obtain
~@26#!. Therefore, early work, such as that conducted by Thurs
@27#, concentrated on portions of the dispersion curves that co
be calculated using only real Bessel functions. However, m
recent work by Safaai-Jazi et al.@28#, Simmons et al.@29#, and
Viens et al.@30#, has been able to model the entire range of d
persion curve solutions. In addition, recent work by Nagy@24# and
Berliner and Solecki@25,31# has looked at wave propagation i
transversely isotropic rods that are immersed in a fluid. A rec
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Table 1 Material properties used in analysis

Material
Density
~kg/m3!

Longitudinal
velocity, cL

~m/s!

Shear
velocity, cs

~m/s!

Longitudinal
bulk wave
attenuation,
aL ~nepers/
wavelength!

Shear bulk
wave

attenuation,as
~nepers/

wavelength!

Steel 7932 5960 3260 0.003 0.008
Grout 1600 2810 1700 0.043 0.1
Epoxy 1170 2610 1100 ¯ ¯

Glass 2600 5570 3520 ¯ ¯

Cast iron 7100 4500 2500 ¯ ¯
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paper by Nayfeh and Nagy@32# considers leaky axisymmetri
waves in multilayered transversely isotropic fibers that are imb
ded in a solid.

The work described here was motivated by the need to ins
the tendons in post-tensioned concrete bridges. This requirem
was highlighted by the collapses of the Ynys-y-Gwas bridge
South Wales in 1985~@33#! and of a post-tensioned bridge i
Palau~@34,35#!. In a post-tensioned construction, the bridge ga
its strength from the tensioning of internal tendons after the c
crete framework of the bridge has already hardened. The ten
can be single wires~usually found in older bridges! or strands of
seven wires~usually found in newer bridges!. The wires are fre-
quently 5 or 7 mm in diameter~although they can be much large!
and the strands are typically 12–15 mm total diameter. The
dons are located in metal or plastic tubes called ducts, which
often hold several individual tendons. Corrosion protection for
tendons is provided by filling the ducts with grout~cement, water,
and possibly additives! once the tendons have been tension
However, large air voids can be trapped in the grout. Over t
these voids can fill with salt water as de-icing salts leach thro
small cracks in the concrete or joints between segments of
bridge. Contact with salt water causes the tendons to corr
quickly and can lead to the failure of the bridge. An effecti
nondestructive test method needs to be able to detect the ons
corrosion in the tendons, or the complete break of one individ
tendon of the several that are present in each duct. Some emp
work has been carried out on this and analogous problems@36,37#
but the nature of the propagating modes has not been determ

Since the work originated as a study of the post-tensio
bridge inspection problem, this paper concentrates on the spe
case of a steel bar imbedded in grout. However, changes in
behavior of the guided modes as the impedance of the imbed
medium is varied are investigated and the analysis and form o
results is applicable to other systems comprising a wire/bar
bedded in a solid material that has a lower acoustic impeda
than that of the bar. The aim of the work was to identify mod
which have a minimum of attenuation as they propagate along
waveguide formed by the bar, and so to maximize the length
the system that can be inspected from the end of the bar, or f
any access point that can be created along its length.

2 Wave Propagation Solution Method
Each solution for wave propagation in cylindrical systems ci

in the previous section applies to a limited range of problems.
example, the solution presented in Berliner and Solecki’s w
~@25#! only accommodates a single layer and does not cons
materials that are imbedded in a solid. The excellent work
Nayfeh and Nagy~@32#! allows an arbitrary number of layers an
the possibility of imbedding the structure in a solid; however
does not model nonaxisymmetric wave propagation, or immers
in a fluid. The authors have developed general purpose softw
DISPERSE, for the prediction of the dispersion curves of syste
having either flat or cylindrical geometry with an arbitrary numb
of layers~@38,39#!. Each layer can be an elastic isotropic mater
an isotropic material with material damping, a transversely iso
pic material, or a fluid. Different material types can be eas
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combined. The solution is valid for both axisymmetric and no
axisymmetric wave propagation~longitudinal, torsional, and flex-
ural modes! and can model leakage into a solid or liquid mediu

The software is based on the global matrix method for
analysis of multilayered structures that overcomes the problem
instability at high frequency-thickness products commonly as
ciated with the Thomson-Haskell transfer function techniq
~@38#!. The field equations for cylindrical systems are based
those of Gazis@16#. The derivation for a transversely isotrop
material closely follows the technique of Mirsky@21#, incorporat-
ing adaptations similar to those used by Berliner and Solecki@25#.
All the predictions presented here were produced using the D
PERSE software. Further details of the derivations and the s
ware implementation can be found in@40#.

The material properties for steel and cement grout used in
analysis are given in Table 1. The values for steel were obtai
from the literature~@41#! while the longitudinal and shear veloc
ties in grout and the longitudinal wave attenuation were measu
on samples made at Imperial College with a water/cement rati
0.6. The shear wave attenuation was too high to be meas
accurately and the value given in Table 1 was estimated. H
ever, its precise value has little effect on the rate of leakage fr
the bar and so does not significantly affect the results prese
here. Table 1 also gives the properties of epoxy, cast iron,
glass that were used to study the effect of changes in the aco
impedance of the imbedding medium. Since the attenuation of
imbedding medium has only a secondary effect on the predictio
these materials were modeled as perfectly elastic. Except w
stated, all the results are for a steel bar imbedded in an infi
space of grout. This is a reasonable approximation to the prac
case of a bar imbedded in a cylinder of grout when the cylin
diameter is much larger than the bar diameter.

The mode names used in this paper follow the format of S
and Bainton@42#. All the modes which are discussed are prop
gating along the axis of the imbedded bar;L(0,n) modes are
axisymmetric modes having zero circumferential displaceme
while F(m,n) modes have displacements varying as cosmu
around the circumference of the bar. For both types of modes
second index,n, is used to sequentially number the modes o
given type. In general, modes of a higher order ‘‘n’’ exhibit more
complicated displacement profiles through the diameter of the
Torsional modes are not considered in this paper.

3 Possibility of Non-Leaky Mode
The ideal solution to the problem of inspecting an imbedd

structure would be to find a mode that would propagate along
structure without leaking energy into the surroundings, so red
ing the attenuation and making it possible to inspect a long
tance along the structure from a single transducer position. T
possibility has been investigated for the case of steel imbedde
cement grout. Initial predictions were done on the analytica
relatively simple case of a flat steel plate imbedded in grout
showed that a non-leaky mode does exist for this system, as d
onstrated in Fig. 1~a! where it can be seen that at low frequencie
the a0 mode, which is similar to theF(1,1) mode in a bar, has a
non-leaky section where its phase velocity dips below the sh
Transactions of the ASME
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bulk velocity of the surrounding medium. However, as Fig. 1~b!
shows, this non-leaky section does not exist for the equiva
cylindrical system; theF(1,1) mode could not be found below th
bulk shear velocity in the surrounding medium. Mathematically
is probable that the mode does continue from the point at whic
reaches the bulk shear velocity, but it does not go into a non-le
region; instead, it continues at a phase velocity equal to the b
shear velocity and modes having a phase velocity equal to on
the bulk velocities cannot be traced using the global ma
method~@38#!. For interest, Fig. 1~b! also shows theL(0,1) mode
which is similar to thes0 mode in a plate.

The existence or nonexistence of non-leaky modes is a t
that warrants more research. The parameters that control the
istence of a non-attenuating guided wave that exists at the in
face of two semi-infinite solids~the Stoneley wave!, have previ-
ously been studied and expressed in an explicit form~@43,44#!.
However, this knowledge has not been expanded to include fi
thickness plates and cylinders. The derivation and experime
confirmation of the comparable conditions for an imbedded
and plate would be very valuable in the design of ultrasonic t
ing systems.

Although the reason for a non-leaky mode section appearin
the Cartesian system and not in the cylindrical system is not c
pletely understood, examination of related cases provides s
insight. Figure 2 shows the calculated phase velocity disper
curves for the cylindrical system of Fig. 1~b!, but with the density
of the ‘‘grout’’ reduced from 1600 kg/m3 to 500, 600, 700 and
800 kg/m3, the bulk wave velocities being kept constant at t
values given in Table 1. A non-leaky section appears, but as
density increases, the frequency range over which it exists red
and the minimum phase velocity seen in the non-leaky reg
approaches the bulk shear velocity in the grout. There is a dis
tinuity in each curve as it crosses the bulk shear velocity in
‘‘grout.’’ For comparison, Fig. 3 shows thea0 mode dispersion
curves for the Cartesian system of Fig. 1~a! as the ‘‘grout’’ den-

Fig. 1 Phase velocity dispersion curves for „a… steel plate im-
bedded in grout; „b… steel bar imbedded in grout
Journal of Applied Mechanics
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sity is varied. In this case, the phase velocity is reduced to va
well below the bulk shear velocity in the ‘‘grout’’ and the non
leaky section covers a wider frequency range than in the cylin
cal case.

It should be noted that even if a non-leaky mode had b
found, its attenuation would not be zero. This is illustrated in F
4 which shows the attenuation and phase velocity dispers
curves for thea0 mode of a steel plate imbedded in grout corr
sponding to the phase velocity relationships of Fig. 1~a!, but only
plotted up to a frequency-thickness product of 0.4 MHz-mm. T
attenuation is plotted on a nondimensional Nepers-m/m scal
for a particular plate thickness, the attenuation per meter is gi
by the value read from the graph divided by the thickness. T
attenuation rises sharply once the phase velocity exceeds the
shear velocity in the grout, but even in the non-leaky region be
this, there is significant attenuation. The finite attenuation in
non-leaky region is primarily due to energy dissipation in t
grout; this is possible because although there is no radiation
the grout, an inhomogeneous wave is present in the grout adja
to the plate and the model includes the damping properties of
imbedding material. The wave fields in the steel and grout
shown in Fig. 4~c!. These mode shape plots indicate that the o
of-plane~w! motion is fairly uniform across the thickness of th
steel plate, while the in-plane~u! motion varies roughly linearly
across the plate. This is as expected for thea0 mode at low fre-
quencies where it is primarily a bending mode. Both the in-pla
and out-of-plane displacements are continuous across the s
grout boundaries and then reduce exponentially with distance
the

Fig. 2 Phase velocity dispersion curves for F„1,1… mode of
steel bar imbedded in ‘‘grout’’ of varying density „densities
shown in kg Õm3

…

Fig. 3 Phase velocity dispersion curves for a0 mode of steel
plate imbedded in ‘‘grout’’ of varying density „densities shown
in kg Õm3

…
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grout; this is characteristic of an inhomogeneous wave.~Figure
4~c! only plots the motion in the grout to a distance of 10 pla
thicknesses from the plate surface, but the trend continues be
this point.!

4 High-Frequency Modes
Having demonstrated that there is no non-leaky section of

F(1,1) mode for the steel bar imbedded in grout for the case
the real properties of Table 1, attention was turned to the hig
frequency modes. Figures 5~a!, 5~b! and 5~c! show the phase
attenuation, and energy velocity dispersion curves of all
L(0,n) modes of a steel bar imbedded in grout up to a frequen
radius product of 50 MHz-mm. The energy velocity rather th
the group velocity has been plotted in Fig. 5~c! because, while the
two are equivalent in a lossless or weakly attenuative system
group velocity is not well defined in regions of high attenuati
~@45#!. A definite pattern emerges in the attenuation dispers
curves of Fig. 5~b!. There is a series of modes that have sh
attenuation minima at higher frequencies. The value of the atte
ation at successive minima decreases up to a frequency-radi
about 23 MHz-mm~point B! and then increases slowly.

The surprising finding that the minimum attenuation is seen
relatively high frequency can be explained by studying the m
shapes. Figures 6~a! and 6~b! show the axial and radial displace
ment and strain energy profiles across the bar corresponding t
two attenuation minima markedA andB in Fig. 5. The motion and
strain energy is concentrated at the center of the bar with v
little motion at the interface with the grout. This limits the leaka
and so explains the relatively low attenuation. An example of
mode shape away from the attenuation minima is shown in
6~c!. Here there is significant displacement at the surface of
bar and so more leakage will occur. As the frequency-radius p
uct increases, the strain energy at the attenuation minima is
creasingly concentrated in the middle of the bar, and up to ab
23 MHz-mm, the minimum value of attenuation decreases. Ab
23 MHz-mm, the strain energy at the attenuation minima con
ues to be increasingly concentrated in the middle of the bar,
the actual value of the attenuation rises as material attenuatio

Fig. 4 Dispersion properties for a0 mode of steel plate imbed-
ded in grout „a… attenuation; „b… phase velocity; „c… mode shape
at minimum phase velocity „position A in „b……
70 Õ Vol. 68, JANUARY 2001
te
ond

the
of

her

he
cy-
an

the
n

ion
rp
nu-
s of

t a
de
-
the

ery
e
he
ig.
the
od-

Fig. 5 Dispersion curves of axisymmetric „L „0,n …… modes of
steel bar imbedded in grout. „a… phase velocity; „b… attenuation;
„c… energy velocity; „d… as „b… but zero steel attenuation.
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the steel becomes more significant. Investigations with differ
assumed values of steel bulk wave attenuation showed tha
frequency at which the lowest minimum occurs increases as
steel attenuation decreases. This is as expected since at
values of steel attenuation, a higher frequency has to be rea

Fig. 6 Mode shapes corresponding to points marked on Fig. 5.
„a… point A ; „b… point B ; „c… point C. „—— axial displacement,

radial displacement, shaded—strain energy. Strain energy
plotted in -ve direction to avoid confusion with axial displace-
ment. …
Journal of Applied Mechanics
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before the loss due to material attenuation approaches the los
to leakage. The attenuation dispersion curves for the case of
steel attenuation are shown in Fig. 5~d!; it can be seen that in this
case, the minimum attenuation reached by successive min
continues to decrease. TheL(0,2) mode has the lowest attenuatio
when the attenuation of the steel is set to zero, whereas its att
ation was much higher in the real case of Fig. 5~b!. A numerical
study showed that the attenuation of this mode is dominated
the shear wave attenuation in the steel, whereas the longitud
wave attenuation is more important in the higher order mod
Since the shear wave attenuation of steel is higher than the lo
tudinal wave attenuation, removing all the attenuation has a la
effect on modes whose attenuation is dominated by the s
wave attenuation.

It is interesting to note that the attenuation minima coinc
with the energy velocity maxima. The same maxima in ene
velocity exist for modes with zero attenuation in a free, elas
bar, so the energy velocity is not linked to the attenuation. T
energy velocity reaches a maximum in this region because
phase velocity is just above the bulk longitudinal wave speed
the fastest material~steel! so the longitudinal partial wave is di
rected almost parallel to the bar. In addition at this point, the ra
of the amplitude of the longitudinal partial wave to the she
partial wave in the steel is greater than at any other location.
higher frequency flexural (F(m,n)) modes also have attenuatio
minima similar in form to those of the axisymmetric (L(0,n))
modes shown in Fig. 5. However, the actual values of attenua
at the minima are higher for the flexural modes than for the a
symmetric modes.

The energy velocity curves of Fig. 5~c! show that the first 11
energy velocity maxima, which relate to the attenuation minima
Fig. 5~b!, correspond to the first 11L(0,n) modes in sequence
However, all the subsequent maxima correspond to theL(0,12)
mode. This is connected to the behavior of the phase velo
dispersion curves of Fig. 5~a! which are shown expanded in th
region of the steel longitudinal velocity in Fig. 7~a!. ~The curves
of Fig. 7~a! were calculated for zero material attenuation in t
grout, but this makes minimal difference to the results.! The rate
of change of phase velocity with frequency of the first 11 mod
Fig. 7 Phase velocity dispersion curves for steel bar imbedded in „a… grout; „b… epoxy; „c…
glass; „d… cast iron. Imbedding medium has zero attenuation in these plots.
JANUARY 2001, Vol. 68 Õ 71
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reduces as it approaches the steel bulk longitudinal velocity
the curve then carries on towards the bulk shear velocity. In c
trast, theL(0,12) mode curve does not carry on towards the b
shear velocity but remains above the bulk longitudinal veloc
crossing the curves of the higher order modes. This mode cros
behavior has previously been observed in the case of plastic p
with high material attenuation in vacuum~@46#! where it was
shown that as the attenuation increased, the mode order~and
hence frequency! at which the crossing was first observed r
duced.

Figures 7~b!, 7~c!, and 7~d! show phase velocity dispersio
curves corresponding to those of Fig. 7~a! but with the steel bar
imbedded in epoxy, glass and cast iron, respectively. In orde
confine the study to the effect of the elastic properties of
imbedding medium, all the imbedding media were modeled w
zero material attenuation; the steel attenuation was as give
Table 1. In epoxy, the mode crossing first occurs at around
MHz-mm, while in glass it occurs at about 15 MHz-mm and
cast iron, the first higher-order mode crosses subsequent m
and a family of modes whose phase velocity is asymptotic to
bulk longitudinal velocity, rather than the bulk shear velocity, c
be seen. This behavior is exactly analogous to that seen in pl
plates with different degrees of material attenuation~@46#!. How-
ever, in the case discussed in this paper, the loss mechanism
trolling the mode crossing is leakage into the surrounding m
dium, rather than material attenuation. Around realistic values
steel such as those given in Table 1, the bulk wave attenuatio
the imbedded bar has little effect on the frequency-radius prod
at which the mode crossing phenomenon first occurs; it wo
have an effect if it approached the values seen in highly atten
tive plastics. In the glass and cast iron cases of Figs. 7~c! and 7~d!,
the first mode does not tend to infinite phase velocity at z
frequency, but instead the phase velocity has a maximum be
tending to zero at zero frequency. This phenomenon has b
discussed by Nayfeh and Nagy@32#. Discontinuities can be see
in the glass case of Fig. 7~c! at a phase velocity of around 5.
km/s. This corresponds to the bulk longitudinal wave velocity
the glass; discontinuities are frequently seen at the bulk w
velocities of the imbedding media as below these velocities,
corresponding leaking waves become inhomogeneous.

Figure 8 shows the attenuation dispersion curves for the
mode displaying the mode crossing behavior for steel imbedde
cast iron, glass, and grout corresponding to the phase velo
plots of Fig. 7. It is clear that the minimum attenuation reached
the grout case is lower than that reached in the other materials
that it occurs at a lower frequency. The low attenuation minima
the grout case shown in Fig. 8 do not extend below about
MHz-mm because another mode becomes the lowest attenu
mode at lower frequencies, as shown in Fig. 5. The epoxy cas

Fig. 8 Attenuation dispersion curves of first ‘‘crossing mode’’
of steel bar imbedded in cast iron, glass, and grout. „Grout
case shown dotted for clarity. …
72 Õ Vol. 68, JANUARY 2001
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not shown in Fig. 8 to avoid over-complicating the diagram. Ta
2 shows the minimum attenuation reached in the four cases
the frequency at which it occurs. Thus, as the impedance of
imbedding material increases, the value of the minimum atten
tion increases and it occurs at a higher frequency.

5 Experimental Investigation

5.1 Specimens and Setup. The experimental investigation
was designed to verify the predictions of the existence of re
tively low loss modes in the steel-grout system. The small surf
displacements in the mode shapes shown in Fig. 6 indicate th
would be difficult to excite the low attenuation modes by applyi
surface tractions to the circumference of the bar. However, t
should be relatively easy to excite by applying an axial force
the end of the bar.

Two test specimens were constructed, both comprising
8.1-mm diameter mild steel bar at the center of a plastic pipe fi
with grout. The pipe had an internal diameter of approximat
100 mm and so was similar to the ducts used in post-tensio
bridges. The grout had a water to cement ratio of 0.6~no addi-
tives! and was pumped into the plastic pipe using a small vers
of the pumps typically used in grouted tendon constructi
Slightly corroded steel bars were used to improve the bond
between the steel and the grout. The grouted sections cov
about two meters of the bars, leaving sections around 50 mm
protruding from the grout at each end. For one of the specim
the bar was undamaged, while for the second specimen, not
were cut approximately 500 mm from each end of the bar. T
notches were created with a saw, one cut being 2 mm deep w
the cut at the other end of the bar was 4 mm deep~i.e., about half
way through the bar!. The notches were not covered when t
grout was poured so they were probably filled with grout.

The tests were performed using a LeCroy 9101 arbitrary wa
form generator that sent a windowed toneburst to a standa
MHz center frequency, unfocussed ultrasonic immersion tra
ducer~Krautkramer Branson 0.5-inch diameter, 5 MHz alpha
ries! via a custom-built power and receiver amplifier that h
pulse-echo capabilities. The output voltage from the power am
fier was approximately 55V peak-peak. Both through transmiss
tests, with the transmitting transducer at one end of the bar and
receiver at the other end, and pulse echo tests with a single tr
ducer acting as both transmitter and receiver at one end of the
were carried out. The transducers were gel coupled to the p
ends of the bar and held in place by a spring loaded clamp.
received signals were averaged 250 times on a digital osc
scope. Although relatively low attenuation minima are predic
in some modes, it is necessary to measure signals which atten
by over 100 dB over a 2 mpath length if the dispersion curves a
to be measured over a significant frequency range away from
minima. In cases where the signal-noise ratio was low, the
ceived signal was passed through an analogue band-pass
before being fed to the oscilloscope.

5.2 Results. Figure 9 shows the results of through transm
sion tests on the undamaged bar. The excitation signal wa

Table 2 Minimum attenuations with different imbedding media
and frequencies at which they occur. In these predictions the
imbedding media have zero-bulk wave attenuation.

Imbedding material
Minimum attenuation

~dB-m/m!

Frequency at which
minimum

attenuation reached
~MHz-mm!

Cast iron 0.225 34.5
Glass 0.211 30.7
Grout 0.159 22.9
Epoxy 0.148 21.0
Transactions of the ASME
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10-cycle Gaussian windowed toneburst whose center freque
was varied in steps from 3.0 to 8.0 MHz. The signal received
the other end of the bar was Fourier transformed and Fig. 9 sh
the resulting spectrum of the measured response as the c
frequency of the excitation was varied. A series of response p
running parallel to the excitation frequency axis can be seen
dicating that the bar acts like a mechanical filter that passes
selected narrow frequency bands. Hence, the response at
given excitation center frequency is proportional to the amplitu
of the spectrum of the excitation in these ‘‘pass bands.’’ Figure
shows the maximum response obtained at any excitation
quency between 3 and 8 MHz as a function of frequency.~i.e.,
Fig. 10 is a view of the three dimensional plot of Fig. 9 lookin
parallel to the excitation frequency axis.! The dotted line shown in
Fig. 10 was obtained by carrying out a similar experiment to t
of Fig. 9, but instead of transmitting the signal through the imb
ded bar, it was transmitted through a 50-mm-thick steel block
therefore describes the form of the response obtained when
same transducers, amplifiers, and excitation are used on a sy
with negligible attenuation. The amplitude scales of the dotted
solid lines on Fig. 10 are very different since the minimum atte
ation along the imbedded bar was of the order of 75 dB hig
than the attenuation through the block. In principle it would
have been possible to compare the absolute amplitudes obta
in the two experiments, but the coupling of the 13-mm-diame
transducers to the large steel block was more satisfactory than
to the 8.1-mm-diameter bar, and the absolute amplitude of
response of the bar also changed in different experiments du
coupling variations. It would have been possible to obtain
curves of Fig. 10 in a single experiment with a relatively broa
band input. However, carrying out multiple experiments with n
row band excitation at different center frequencies gave a m
better signal/noise ratio, this being particularly significant in t
regions between the response peaks.

Fig. 9 Spectrum of response of signal transmitted through 2
m imbedded bar as excitation toneburst stepped between 3.0
and 8.0 MHz

Fig. 10 Maximum response as function of frequency. im-
bedded bar results of Fig. 9; - - - - similar test on 50-mm-thick
steel block. Note: The scales on the two plots are indepen-
dently normalized.
Journal of Applied Mechanics
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The form of the frequency response of the imbedded bar ca
obtained by dividing the response obtained in the test on the
~the solid line of Fig. 10! by the response in the test on the ste
block ~the dotted line of Fig. 10!. This frequency response wa
converted to an attenuation plot by using the relationship

Attenuation~dB!5220 log10

a

aref
(1)

wherea is the amplitude of the normalized frequency response
the imbedded bar andaref is a reference amplitude. In this cas
aref was taken as the maximum of the frequency response func
so the relative attenuation was 0 dB at this frequency. The s
line of Fig. 11 shows the results of this calculation, the result
Eq. ~1! being converted to dB/m by dividing by the 2 m length of
the imbedded bar. The curve flattens to a series of jagged pea
higher values of attenuation; this is due to the transmitted sig
reducing to the noise floor in these regions. The dotted line of F
11 shows the predicted attenuation of an 8.1-mm-diameter s
bar imbedded in grout, the attenuation being normalized to
minimum value. It should be stressed that the experimental
predicted curves have been independently normalized to thei
spective minimum values and no fitting of the predictions to
experiments has been done. The agreement between the ex
mental and predicted curves is very good, both showing a serie
sharp attenuation minima that occur at regular frequency spac
The predicted and measured widths and frequency locations o
minima are very similar and the depth of the attenuation mini
follow the same trend for both cases. In general, the higher
quency modes have lower attenuation than the lower freque

Fig. 11 Predicted „- - - -… and measured „ … normalized at-
tenuation curves for 8.1-mm steel bar imbedded in grout

Fig. 12 Time traces from tests on 8.1-mm steel bars imbedded
in grout: pulse-echo tests on one bar with a 2-mm saw cut 450
mm into the grout and on another bar with a 4-mm saw cut 450
mm into the grout; through transmission test ove r 2 m l ength
of undamaged imbedded bar. Excitation was 50 cycle, 3.75 MHz
Hanning windowed toneburst.
JANUARY 2001, Vol. 68 Õ 73
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modes. This good agreement between the experimental
predicted results increases confidence in the accuracy of
modeling.

The bottom trace of Fig. 12 shows the signal received in
through transmission test on the undamaged bar when the ex
tion was a 3.75-MHz 50-cycle Hanning windowed tone burst. T
top two traces show the signal obtained in pulse-echo experim
from the two ends of the damaged bar at the same frequency
on the same amplitude scale. The echoes from the 2-mm
4-mm deep saw cuts approximately 450 mm from where the b
enter the grout can clearly be seen. The multiple echoes a
beginning of the response correspond to reverberations in
short length of bar that protrudes from the grout. Reflections fr
the saw cut close to the end of the bar remote from the transd
would appear at a propagation distance of 3.1 m~1.55 m to the
defect and back!, which is beyond the range plotted in Fig. 1
There was no evidence of these reflections in the received si
since the attenuation produced by the extra propagation dist
reduced their amplitude to well below the noise floor. The sign
from the two saw cuts shown in Fig. 12 appear to be of sim
amplitude. The reflection coefficient from notches in imbedd
bars is not simply proportional to the area removed by the no
~@47#! but a larger reflection would be expected from the dee
notch. The similar measured amplitudes may be due to coup
variations at the two ends of the bar or to differences in the ex
to which the notches are filled with grout. This test shows t
pulse-echo testing can be used to detect defects in imbedded
The test range could be improved by optimizing the freque
used to the minimum attenuation and using resonant, rather
broadband, transducers matched to this frequency with care
tailored excitation and response filters. The number of cycle
the input signal could also be increased.

Careful examination of the reflected and transmitted signals
veals interesting behavior of these guided wave modes. Fig
13~a! shows a detailed view of the signal reflected from t
4-mm-deep notch in a pulse echo test. The transducer was pl
at the end closer to the notch and the excitation was a 5 cycle, 5.2
MHz Gaussian windowed tone burst. The wavelet transform

Fig. 13 Reflection of 5-cycle 5.2 MHz center frequency Gauss-
ian windowed toneburst from 4-mm-deep notch in 8.1-mm-
diameter imbedded bar. „a… Time domain signal; „b… wavelet
transform of „a… showing amplitude as gray scale „black high …

in time-frequency plane. Lines show predicted group delays
obtained from energy velocity and overall propagation dis-
tance.
74 Õ Vol. 68, JANUARY 2001
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this signal obtained using the Morlet wavelet~@48#! is shown as a
contour plot in Fig. 13~b!. This illustrates how the frequency con
tent of the received signal changes with time. Each of the gui
wave modes that can exist within the frequency bandwidth of
signal is excited and travels at a slightly different speed. T
interference of the various modes causes the complicated
signal shown in Fig. 13~a!; the different wave packets seen in Fi
13~a! are not the separate modes. For comparison, the solid l
in Fig 13~b! represent the energy velocity dispersion curves for
8.1-mm imbedded bar after they have been converted into a
delay for a signal to travel the distance to the notch and back.
modes excited in this frequency band areL(0,10), L(0,11), and
L(0,12). The agreement between the predicted and measure
rival time for each of the modes is very good. Figure 13~b! also
shows that the response maxima coincide with the time de
minima, which confirms that the energy velocity maxima occur
the same frequencies as the attenuation minima.

6 Conclusions
It has been shown that the dispersion curves of a circular

imbedded in a lower impedance medium have a series of att
ation minima at roughly equal frequency spacing. The attenua
minima occur at the same frequencies as energy velocity max
and they correspond to points at which the particle displacem
and energy of the particular mode are concentrated towards
center of the bar so leakage of energy into the imbedding med
is minimized. The attenuation at the minima decreases with
creasing frequency as the energy becomes more concentrat
the middle of the bar, until the material attenuation in the b
becomes a significant factor and the attenuation at the min
rises again. For a steel bar in cement grout, the minimum atte
ation is reached at a frequency-radius product of about 23 M
mm. The frequency-radius product at which the minimum atte
ation is reached and the value of the minimum attenuation b
increase as the acoustic impedance of the imbedding medium
creases. Excellent agreement has been obtained between th
dictions and experimental measurements on a steel bar in ce
grout. The results indicate that with further transducer and ins
mentation development, it will be possible to inspect a signific
length of imbedded bar using excitation at the free end of the
This has application to the inspection of the tendons in po
tensioned bridges at locations close to the anchor points at
ends of the bridge. The knowledge of these mode phenomena
offers potential for maximising the propagation distance of guid
modes in other imbedded bar systems. It has also been shown
the non-leaky mode that exists in the case of a flat plate imbed
in cement grout does not exist in the corresponding case o
circular bar imbedded in grout although it may exist for oth
material combinations.
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On Crack Initiation Mechanisms
in Fretting Fatigue
By using the crack analogue model of rigid flat-ended contact, crack initiation in fret
fatigue is analyzed. The coefficient of friction at the edge of contact, which characte
the asymptotic stress field, is considered as the primary controlling parameter in
process. Meanwhile, the maximum tangential stress criterion and the maximum
stress criterion are used to predict opening-mode and shear-mode crack initiations
spectively. By examining the model prediction and comparing it with experimental o
vations, it is shown that the observed microcracks at the small angles to a fretting su
were nucleated in shear mode in the early stage of tests with a smooth initial sur
while the microcracks at the large angles were nucleated in opening mode in the
stage with a rough worn surface. This understanding may help to establish the sequ
damage mechanisms in the complex process of fretting fatigue.
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1 Introduction
Fatigue life and endurance limit of solids are significantly

duced by contact and cyclic fretting when added to plain fatig
conditions; fatigue in this situation is called fretting fatigue. It h
been well known that the contact and cyclic fretting loads activ
flaws at the contact surface, which are dormant in plain fatig
conditions, to develop cracks. However, a thorough analysis
initiation of fretting fatigue is difficult because many factors a
involved in the process~@1#!. Thus, a simple model including one
or at most few key factors, becomes important and credible
long as it ably takes into account some of the common obse
tions in fretting fatigue, such as described in the following. In
typical fretting fatigue test, multiple cracks are often found ne
the edge of contact~@2,3#! or near the slip-stick boundary~@4,5#!.
These cracks are nucleated at angles less than 90 deg on the
ting boundary beneath the pad. However, the angles vary wi
from 25 deg to 80 deg in various materials@3,6–14#. In addition,
the coefficient of friction between the specimen and pad~mea-
sured as the average over the entire contact surface! evolves from
an initially small value of;0.2–0.4 to a large value of;0.7–1.2
due to wear and asperity adhesion~@5,7,11#!. There are also othe
characteristic features just beyond the initiation, such as
kinked knee shape of a fretting fatigue crack~@7,10#!. On the other
hand, the modeling and analysis of fretting fatigue initiation ha
been based largely on a noncrack or nonfracture mechanics
proach in which the stress and strain in critical planes along
contact surface are used to formulate a criterion~@13,15–18#!. The
noncrack approach is simple in formulation and is easy to appl
the engineering practice. Also, it may work well for the frettin
fatigue with a nonconcentrated contact stress field. Howeve
many cases of fretting fatigue, the stress and strain are hi
concentrated near the edge of contact, and consequently are
sitive to slight changes in the fretting conditions, causing diffic
ties in applying the noncrack approach. In these cases, the in
tion of damage could be immediate due to the highly concentra
state of stress and strain compared to a finite strength of mate
However, the nucleation of a crack may or may not occur depe
ing upon the intensity of stress~equivalently, energy release rate!
rather than by the strength-type driving forces at critical plan
Recently, Giannakopoulos et al.@19# have proposed the crac
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analogue approach of fretting contact, and identified some imp
tant aspects of the equivalence between contact mechanics
fracture mechanics validating the approach under the conditio
small-scale yielding. This approach ably facilitates the analysis
crack initiation in fretting fatigue in the cases of high stress co
centration. Giannakopoulos et al.@20# further considered the ef
fects of adhesion in contact fatigue using the crack analo
approach.

The present work is intended to analyze crack initiation mec
nisms in fretting fatigue by applying the crack analogue approa
In Section 2, characteristics of the asymptotic stress field at
edge of contact by a rigid flat-ended punch pressing on an ela
substrate are discussed first. For the case where the asymp
stress field may be characterized by using the stress intensity
tors, the crack analogue is invoked. The criteria for crack init
tion under mixed-mode loading within the framework of line
elastic fracture mechanics~LEFM! are then summarized, includ
ing the maximum tangential stress~MTS! criterion for opening-
mode crack extension and the maximum shear stress~MSS! cri-
terion for shear-mode crack extension. These criteria are use
examine initiation angles of a crack at the edge of contact.
Section 3, the predictions by the model and their implicatio
related to experimental observations are discussed. The coeffi
of friction at the edge of contact, which characterizes t
asymptotic stress field, serves as the primary controlling par
eter in this process. It is found that the driving force for she
mode crack initiation is dominant over the driving force f
opening-mode crack initiation with a small value of the coefficie
of friction, and the dominance by shear mode crack initiati
diminishes with an increasing value of the coefficient of frictio
By correlating the model predictions to the experimental obser
tions of crack angles and evolving coefficient of friction, th
study shows that the small-angle cracks were nucleated in s
mode in the early stage of tests with smooth surfaces~i.e., a small
coefficient of friction!, while the large-angle cracks were nucl
ated in opening mode in the later stage with rough worn surfa
~i.e., a large coefficient of friction!. At last, some conclusions ar
drawn in Section 4.

2 Crack Analogue Approach for Crack Initiation in
Fretting Fatigue

Fretting fatigue involves environmental, chemical, and m
chanical factors at the contact surfaces. A complete considera
of the process appears to be extremely difficult. The present w
focuses on the mechanical part of the process by applyin
simple model of fretting contact. Although the pad geometry a
material similarity between the pad and substrate in reality m

of
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vary, the configuration with a rigid flat-ended punch pressing
an elastic substrate is considered in this study. The advantag
the simple model is that only one parameter, i.e., the coefficien
friction between the substrate and pad, characterizes
asymptotic stress field. In the following, the asymptotic str
field at the edge of contact is first discussed. For the case w
the asymptotic stress field is singular on the order of 0.5, the c
analogue approach is invoked. Then, the MTS and MSS crit
for crack extension are described, within the framework of LEF

2.1 Asymptotic Stress Field. Consider a homogeneous, iso
tropic, linearly elastic body in half plane, indented by a rig
rectangular flat-ended punch of width 2a, as shown in Fig. 1~a!.
The Cartesian coordinates (x,y), and the polar coordinates (r ,u),
both with the origin at the left edge of contact, are selected. W
these two interact, the rigid punch transmits in general a nor
force P, a tangential forceQ, and a momentM ~relative to the
point (x5a,y50)) into the substrate. In order to utilize the an
lytical solution available in the literature, it is further assumed t
the condition of gross slip exists between the substrate and
pad, and the punch indents the substrate surface perpendicu
without rotation. However, these conditions may be relaxed if
local crack initiation only is of interest, as discussed later.

Under the conditions assumed, the asymptotic stress
around the edges of contact is known in the literature~@21#!. The
singularity of the asymptotic stress field is on the order ofR2m at
the left edge of contact and is on the order ofRm21 at the right
edge of contact, whereR is the distance from the edges andm
5tan21(2(12n)/(122n)/ f sp)/p, for Q.0. If Q,0, the two
edges switch the stress fields. In the above expression,n is Pois-
son’s ratio of the substrate, andf sp is the coefficient of friction
between the substrate and the pad. In particular, for the case e
with n50.5 or with f sp50, it turns out thatm50.5, showing the
same order of stress singularity as for a sharp crack in the LE
analysis~@22#!. Otherwise, the order of stress singularity in t
substrate is less than 0.5 at the left edge of contact and is gr
than 0.5 at the right edge of contact. Note that the order of st
singularity other than 0.5 in LEFM is not physically meaningf
for a successful, stable crack extension~@22#!. Some of the restric-
tions, such as the nonrotational indentation of the rigid punch
the substrate surface, should be relaxed so that the stress sin
ity at the edges of contact might show the meaningful order of
leading to a nontrivial but finite energy release rate. Also, fo
study involving only local crack initiation at the edge of conta
the condition of gross slip may be relaxed by assuming tha
partial slip occurs, it does not affect the order of singularity in t
asymptotic stress field. The present work confines itself to
case withm50.5 where the physical meaning of the stress sin
larity for crack development in isotropic, linearly elastic solids
clear.

For the case withm50.5, the crack analogue to the conta
configuration is readily obtained, as shown in Fig. 1~b! ~@19#!. The

Fig. 1 „a… Fretting contact by a rigid flat-ended punch; „b…
crack analogue of the fretting contact configuration in „a…. The
Cartesian coordinates „x ,y … and the polar coordinates „r ,u… are
shown for both configurations.
Journal of Applied Mechanics
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leading terms of the asymptotic stress field at the~left! edge of
contact in the substrate, which is modeled as a sharp crack tip
written as

S s rr

suu

s ru

D 5
KI

A2pr S 5

4
cosS u

2D2
1

4
cosS 3u

2 D
3

4
cosS u

2D1
1

4
cosS 3u

2 D
1

4
sinS u

2D1
1

4
sinS 3u

2 D D
2

KII

A2pr S 2
5

4
sinS u

2D1
3

4
sinS 3u

2 D
2

3

4
sinS u

2D2
3

4
sinS 3u

2 D
1

4
cosS u

2D1
3

4
cosS 3u

2 D D , (1)

wheres rr , suu , ands ru are the components of the stress tens
in the polar coordinates, andKI and KII , respectively, are the
elastic stress intensity factors in mode I and mode II in the lo
coordinates. Note that the sign ofKII is opposite to the conven
tional definition. The normal and shear components of tract
near the edge of contact~inside the contact zone! are obtained as

peoc5
KI

A2pr
and qeoc52

KII

A2pr
, (2)

by settingu50 for suu ands ru in Eq. ~1!, respectively. As evi-
dent by the fretting scars in experiments, slip between the con
surfaces occurs at first at the edge of contact. In addition, i
assumed that the crack initiation takes place at the left edge f
positive Q ~@23#! and a Coulomb-type friction law may describ
the interaction of the fretting surfaces, i.e.,qeoc/peoc5 f sp . Thus,
the relationship betweenKI and KII is established by the coeffi
cient of friction near the edge of contact,f sp , as

KII /~2KI !5 f sp . (3)

If gross slip between the substrate and pad occurs, the same
tionship as in Eq.~3! can be derived forKI andKII ~@19#!. Note
that KI in the present case is negative, which is uncommon i
real crack problem in which the interpenetration of crack surfa
is prohibited. From the above stress field, crack initiation from
edge of contact may be evaluated if a criterion reflecting fract
properties of the substrate is given. The criterion is discussed n

2.2 Crack Extension Criteria. The problem of crack growth
under mixed-mode loading has been under investigation for a
decades. Several criteria for crack growth under combinedKI and
KII have been proposed mainly for brittle materials. The m
widely applied criteria are the maximum tangential stress~MTS!
criterion ~@24#!, the maximum energy release rate~MERR! crite-
rion ~@25,26#!, and the minimum strain energy density criterio
~S-criterion! ~@27#!. Within the LEFM framework, the first two
criteria are basically the same for prediction of pure opening cr
growth as well as in physical meaning~@28,29#!, while the third
one seems to lack a physical support~@25,30,31#!. Otsuka et al.
@32# proposed the criterion of maximum shear stress~MSS! based
on the experimental observation of crack extension in the m
mum shear plane. Shen@33# also observed the shear-mode crac
during the crack coalescence in gypsum. Shen and Stephan
@34# proposed a modifiedF-criterion for mixed mode crack
growth. The MTS and MSS criteria will be used in the followin
analyses of fretting crack initiation because of their clear phys
background. Also these two criteria, respectively, dictate the
bounds of crack-extension mode mixity. They are summari
below.
JANUARY 2001, Vol. 68 Õ 77
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Consider initiation of a crack into the substrate from the edge
contact at angleu, subjected to remoteKI andKII , as shown in
Fig. 1. The local~effective! driving forces for the crack initiation,
kI andkII , are expressed in terms ofu as

kI~u!5suu~u!A2pr

kII ~u!52s ru~u!A2pr J , (4)

where suu and s ru are given in Eq.~1!. The MTS and MSS
criteria have been proposed by correlating the local stress in
sity factorskI and kII to relevant materials properties under a
propriate physical considerations. The MTS criterion states
the crack subjected toKI andKII tends to extend in the directio
of u I in which kI achieves the maximum value and succeeds to
so if the maximum value ofkI is above the threshold. This angl
u I , for the maximum value ofkI is obtained as~@24,31#!

u I52 tan21S AKI
218KII

2 2KI

4KII
D , (5)

by solving the following equations:

]kI

]u
50 and

]2kI

]u2
,0. (6)

It should be noted thatkII 50 at u5u I . However, thatkII 50
itself is insufficient condition to derive the expression of Eq.~5! as
considered in the analysis of the crack analogue model by G
nakopoulos et al.@19#.

Similarly, the MSS criterion states that a crack subjected toKI
and KII tends to extend in the direction ofu II in which ukII u
achieves the maximum value and succeeds to do so if the m
mum value ofukII u is above the threshold. This angle,u II , for the
maximum value ofukII u satisfies the following equation:

]kII

]u
~u II !50. (7)

By substituting the stress components ru given in Eq.~1! for kII ,
it is rewritten as

2KII tan3S u II

2
D 12KI tan2S u II

2
D 27KII tanS u II

2
D 2KI50.

(8)

Unlike applying the inequality of Eq.~6! for u I in the MTS case,
a careful selection from the real roots of Eq.~8! for u II is required
in this case.

The crack analogue model using the rigid flat-ended con
configuration provides the asymptotic elastic stress field at
edge of contact and the driving forces for crack initiation in fr
ting fatigue in terms of stress intensity factors. This simple mo
has distinct advantage that it has only one controlling parame
i.e., the coefficient of friction at the edge of contact. By examin
the model predictions by the crack analogue model in conjunc
with the MTS and MSS criteria within the framework of LEFM
and by comparing them to experimental observations, the c
initiation mechanisms in fretting fatigue are explored, as d
cussed next.

3 Analyses and Discussion
In fretting fatigue, stress in the substrate is often highly conc

trated at the edge of contact. The crack analogue model, as
scribed above, may be appropriate to handle the situation
characterize the driving forces for fretting fatigue crack initiatio
However, there are a few length scales in the analysis of fret
fatigue crack initiation which should be kept in mind. These a
width of the pad, size of the partial slip region, size of the str
concentration zone, and size of the fracture process zone ahe
a single crack tip. The stress concentration zone may be con
ered as equivalent to the zone of plastic deformation or as
78 Õ Vol. 68, JANUARY 2001
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zone of distributed damage, since the stress concentration is n
severe as the effect of a crack tip. In order to apply the cr
analogue model, the last two length scales~i.e., the stress concen
tration and the fracture process zone! must be sufficiently small
relative to the width of the pad. If the size of the stress conc
tration zone is comparable to the size of the fracture process z
associated with a single crack, the overall crack initiation tou
ness is well defined, and the initiation of fretting fatigue cra
may be predicted by using the crack analogue model. In the c
where initiation of multiple microcracks occurs, the crack an
logue model represents the initiation of a dominant crack outr
ning all other cracks, for which the fracture driving force attai
the maximum value. However, when multiple cracks initiate~with
no dominant crack!, the total initiation toughness for these crac
is ambiguous. Further, this problem is of the statistical nature
more complex, and the present crack analogue model is not a
cable to such cases.

The purpose of the present work is to examine the angle
crack initiation for both modes using the crack analogue mo
and to analyze the evolving damage mechanisms in fretting
tigue by correlating the predictions to experimental observatio
Note that the coefficient of friction at the edge of contact,f sp ,
which uniquely characterizes the asymptotic stress field under
condition of slip as described in Eqs.~1! and ~3!, serves as the
single controlling parameter in the crack initiation process. Due
the fact that fretting fatigue cracks normally initiate on the ‘‘te
sile’’ side of contact~@23#!, only the case ofQ.0 is considered
below.

3.1 Model Predictions. Angular variations of effective stres
intensity factors,kI and kII , at the edge of contact for a few
representative values off sp were calculated by using Eqs.~1! and
~4!, and these are plotted in Fig. 2. Angles for the maximu
values ofkI andukII u, i.e.,u I andu II , were evaluated at differen
values off sp by using Eqs.~5! and~8!, and these results forf sp in
the range from 0 to 3 are plotted in Fig. 3. EffectivekI at u5u I
and ukII u at u5u II , and their ratio were subsequently calculate
The ratio is plotted as a function off sp in Fig. 4. Recall thatkI at
u5u I represents the driving force for opening-mode crack init
tion predicted by the MTS criterion, and thatukII u at u5u II rep-
resents the driving force for shear-mode crack initiation predic
by the MSS criterion.

Figure 2 shows the typical angular variations bykI demonstrat-
ing the existence of a peak value ofkI at a certain angle for a
given f sp . Furthermore, Fig. 3 demonstrates that the angle
peakkI , i.e., u I , varies monotonically from 180 deg to 70.5 de
as f sp varies from 0 to infinity. Meanwhile, the angle for pea
~absolute! shear stress,u II , varies monotonically from 70.5 deg t
0 deg. The ratio of effective driving forces for opening-mode a
shear-mode crack initiations,kI(u I) to kII (u II ), is equal to zero at
f sp50, and increases with increasingf sp . It reaches the maxi-
mum value of 1.155 atf sp5`, as shown in Fig. 4. Since it indi-
cates the competition between the driving forces for crack ini
tion in these two modes, this figure demonstrates that the driv
force is in favor of the shear-mode crack initiation at small valu
of f sp and alters to favor the opening-mode crack initiation
large values off sp . The critical value off sp ~which evolves dur-
ing fretting fatigue! for switching the modes should depend o
materials. Note that atu5u II , kI is always negative, indicating a
closed crack if initiated in shear mode.

3.2 Predictions Versus Observations in Fretting Fatigue
Tests. As mentioned before, the crack initiation angle observ
in fretting fatigue tests ranges widely from 25 deg to 80 d
~@3,6–14#!. While these tests can be divided into stages as ch
acterized byf sp between the contact surfaces, at which stage
cracks were initiated is uncertain. In these tests, the initial valu
f sp ~if reported! was normally;0.2–0.4, with a smooth initial
surface. It evolved with cycling, and stabilized at a value
;0.7–1.2. The steady-state values, when used as the localf sp at
Transactions of the ASME



Fig. 2 Variation of effective stress intensity factors k I and k II with angle u, for different values of f sp . The values of k I and k II are
normalized by ÀK I .
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the edge of contact, are conservative because they were mea
as the average over the entire contact surface normally und
partial slip condition. The cyclic slippery process had led
rougher surface of contact and a largerf sp especially near the
edge~@21#!.

If the coefficient of friction is given, the crack initiation mode
in the early and in the stabilized stages in these tests can be
acterized by using the crack analogue model. For example iff sp
50.2, the MSS criterion predicts the crack initiation angle
shear mode to be 33.4 deg in the early stage of fretting fatig
which is in agreement with the lower bound of the angles
served experimentally. Meanwhile, the MTS criterion predicts
crack initiation angle in opening mode to be 139.2 deg, which
much above the range of the observed angles, as shown in F
In addition, the driving force appears to favor shear-mode cr
initiation rather than opening-mode crack initiation in this ca
with a small value off sp . The ratio of the driving forces for
opening-mode and shear-mode crack initiations is equal to 0.0
f sp50.2, as shown in Fig. 4.

Fig. 3 Variation of u I for maximum k I and of u II for maximum
zk IIz with f sp , under the condition of slip at the edge of contact,
predicted by the MTS criterion and by the MSS criterion, re-
spectively. Note that u I and u II , respectively, reach their mini-
mum values of 70.5 deg and of 0 deg at f spÄ`. The upper and
lower bounds of the crack angles observed in tests are also
shown for comparison with the predictions.
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In the later stabilized stage of fretting fatigue, for example w
f sp51.5, the MTS criterion predicts the crack initiation angle
opening mode to be 83.5 deg, which is in agreement with
upper bound of the angles observed experimentally. Meanwh
the MSS criterion predicts the angle in shear mode to be 10.5
which is too small compared to the experimental values. Ho
ever, the small-angle shear-damage mechanism might be res
sible for wear detachments forming slivers instead of fretting
tigue crack initiation. In addition, the driving force appears
favor opening-mode crack initiation in this case with a large va
of f sp . The ratio of the driving forces for opening-mode an
shear-mode crack initiations is equal to 0.81 atf sp51.5, as shown
in Fig. 4. Based on these observations, it is suggested that
crack initiation process was shear-mode dominant in the e
stage with a smooth contact surface and was opening-mode d
nant in the later steady-state stage with a rough worn con
surface in the fretting fatigue tests discussed above.

It should be mentioned that the foregoing analyses are base
the crack analogue model without an actual crack in the subst
It is equivalent to the first-order perturbation analysis of a kink
crack with traction-free surfaces~@35#!. However, it may not al-

Fig. 4 Ratio of k I at u I to zk IIz at u II as a function of f sp , under
the condition of slip at the edge of contact. The ratio indicates
the competition between the driving forces for opening-mode
and shear-mode initiation of a crack.
JANUARY 2001, Vol. 68 Õ 79
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ways be the case that the crack surfaces are traction free sinc
crack may initiate in shear mode and be closed, as mentio
before. If the crack contact happens, the simple perturba
analysis is virtually impossible due to unknown contact inter
tion, and a numerical perturbation analysis is necessary. A
effects of the applied bulk stress on the substrate are neglect
the above analysis. This is reasonable since the bulk stress, a
gous to the elasticT-stress~@36#!, exercises no influence on th
stress intensity factorsKI and KII in the unperturbed configura
tion, and hence no influence on the stress intensity factors for
perturbed infinitesimal crack~@19#!. For the crack growth beyond
initiation, the role of the bulk stress may become important.
example, it may be responsible for the knee-shape kink and re
entation of the crack path as observed in the fretting fatigue te

Finally, this study explicitly demonstrates that increasing
amount of friction would cause a significant change in the way
fretting damage would be initiated. This is indirectly evident fro
the wide variation of the crack initiation angle observed in t
fretting literature, as mentioned earlier. Also, the classical criti
plane fatigue criteria, based on the noncrack approach, implic
indicate that changing the level of friction changes the way fr
ting cracks are initiated. Further, the present crack analo
model has the distinct advantage over the classical critical p
fatigue criteria for scenarios with geometric discontinuities a
involving very high stress concentration, since the latter r
heavily on the accurate determination of the local stress and s
field. Due to severe stress and strain gradients in the fretting
ation, determination of an accurate stress/strain field is qui
challenging task. On the contrary, the present crack analo
model has an edge over them by capturing the dominant pa
the stress field, and thus by providing an efficient and accu
evaluation of the magnitude of driving force for crack initiation
well as its orientation angle.

4 Conclusions
Crack initiation in fretting fatigue is analyzed by using th

crack analogue model. This approach provides the asymp
elastic stress field at the edge of contact and the driving force
the form of stress intensity factors for crack initiation. Since
uniquely characterizes the asymptotic stress field, the local c
ficient of friction between the substrate and pad is considere
the primary parameter to characterize the crack initiation proc
under the condition of slip near the edge of contact. The MTS
MSS criteria are applied to predict the crack initiation directio
in opening mode and in shear mode, respectively. By examin
the model prediction and by comparing it with the experimen
observation of crack initiation angles~the upper and lower
bounds!, it is shown that the observed microcracks at the sm
angles were nucleated in shear mode in the early stage of
with a smooth contact surface~i.e., a small coefficient of friction!,
while the observed microcracks at the large angles were nucle
in opening mode in the later stage with a rough worn surface~i.e.,
a large coefficient of friction!. This understanding may help t
establish the sequential damage mechanisms in the complex
cess of fretting fatigue.
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An Intersonic Slip Pulse at a
Frictional Interface Between
Dissimilar Materials
Two homogeneous and isotropic elastic half-spaces are acted upon by remote norm
shear tractions. The applied shear stress is less than that which is required to pro
overall sliding of the two bodies. The possible existence of a slip pulse is investigated
a finite-width region, on the interface, of altered normal and shear stress which sat
the Amontons-Coulomb law of friction. Pulses which travel at a speed which is gre
than the minimum shear wave speed and less than the maximum dilatational wave
two bodies, are of interest in this investigation. Such pulses are shown to exist for
cient friction and for modest mismatches in material combinations. The pulse is w
singular at the leading edge and bounded at the trailing edge. Furthermore it trave
speeds just below the lesser dilatational wave speed and in the opposite directi
sliding of the lower wave-speed material. In addition, a pair of equations are given w
relate the interfacial normal and shear stress to the interfacial slip velocity. These r
tions are analogous to the subsonic results of Weertman, but are valid for an arbi
speed range.@DOI: 10.1115/1.1349119#
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1 Introduction
The interaction of elastic waves with friction has been the s

ject of many recent investigations. These problems have relev
in the areas of tribology and seismology and thus span a rang
scale from nanometers to hundreds of kilometers.

It is well known that a Rayleigh wave can propagate along
free surface of a semi-infinite elastic body and has an amplit
which decays exponentially with distance from the free surfa
Similar waves can travel along the interface of two contact
elastic bodies. Such waves were investigated by Stoneley@1# for
bonded contact and are known as Stoneley waves. Stoneley w
exist only if the material properties of the two bodies do not dif
greatly. Achenbach and Epstein@2# investigated interface wave
in unbonded frictionless contact in which separation does not
cur. These ‘‘smooth contact Stoneley waves’’~also known as slip
waves or generalized Rayleigh waves! are qualitatively similar to
those for bonded contact and occur for a somewhat wider rang
material combinations. Comninou and Dundurs@3# investigated
slip waves with periodic regions of separation along a frictionl
interface. The possibility of two identical half-spaces sliding w
friction due to the presence of separation waves and/or stick
waves was studied by Comninou and Dundurs@4#. Both of these
analyses showed that such waves could exist only with squ
root singularities at the tips of the slip zones. Freund@5# pointed
out that the singularities encountered by Comninou and Dund
would require energy sources and sinks.

The frictional sliding of an elastic half-space against a rig
surface~Martins, Guimara˜es, and Faria,@6#! and of two elastic
half-spaces~Adams,@7#! have also been investigated. Friction c
cause surface waves~similar to slip waves! to grow with time; the
rate of growth is inversely proportional to the wavelength.
simulations, this phenomenon can lead to numerical proble
which are related to mesh size. Recent work by Ranjith and R
@8# used the Prakash-Clifton@9,10# friction model. In that model

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Divisio
March 28, 2000; final revision, August 15, 2000. Associate Editor: R. C. Ben
Discussion on the paper should be addressed to the Editor, Professor Lew
Wheeler, Department of Mechanical Engineering, University of Houston, Hous
TX 77204-4792, and will be accepted until four months after final publication of
paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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there is no instantaneous dependence of shear stress on n
stress, but rather the shear stress depends on a simple fa
memory of the prior history of normal stress. The use of t
friction law removes the short wavelength ill-posedness of fr
tional sliding.

The notion that certain observed friction behavior is not a pr
erty of the interface, but rather a consequence of system dyn
ics, was suggested by Martins, Oden, and Simo˜es @11#. Adams
@12# investigated the sliding of two dissimilar elastic bodies due
periodic regions of slip and stick propagating along the interfa
It was found that such motion allows for the interface slidi
conditions to differ from the observed sliding conditions. In pa
ticular theinterfacecoefficient of friction~defined as the ratio of
shear stress to contact pressure at the interface! can be constant or
an increasing/decreasing function of slip velocity. However,
apparentcoefficient of friction~defined as the ratio of theapplied
shear stress to theapplied normal stress! will be less than the
interface friction coefficient. Furthermore the apparent coeffici
of friction can decrease with sliding speed even though the in
face friction coefficient is constant. Thus the measured coeffic
of friction does not necessarily represent the behavior of the s
ing interface.

In the limit as the slip region becomes very small compared
the stick region, the results of Adams@12# become that of a slip
pulse traveling through a region which otherwise sticks. Rice@13#
derived that result by using the moving dislocation formulation
Weertman@14#. The existence of such an isolated slip pulse w
postulated by Weertman@15#. Andrews and Ben-Zion@16# ob-
tained a numerical solution for a slip pulse, the amplitude
which increases and the width of which decreases as the p
continues to propagate. This self-sharpening effect is consis
with the analytical solution of Adams@7# for sliding. Recently
Caroli @17# investigated the interface between a viscoelastic m
terial and a rigid surface. It was shown that a periodic set
slip-pulses is impossible for this viscoelastic-rigid interface wh
satisfies Coulomb’s law of friction. However, experimental e
dence, described in~@17#!, indicates the existence of slip-pulse
and so~@17#! discusses possible improvements which could
made to the friction model.

Adams@18# and Nosonovsky and Adams@19# investigated the
sliding of elastic half-spaces. They showed that steady slidin
compatible with the formation of pairs of body waves~a plane
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dilatational wave and a plane shear wave! radiated from the slid-
ing interface. Each wave moves at a different angle with respe
the interface such that the trace velocities along the interface
equal and supersonic with respect to both elastic media. This
personicity does not violate causality as it is only the trace ve
ity which is supersonic; the waves move at the dilatational a
shear wave speeds in their respective bodies. It was also sh
that a rectangular wave train, or a rectangular pulse, can allow
motion of the two bodies with a ratio of remote shear to norm
stress which is less than the ratio of shear to normal stress
quired to produce sliding at the interface. Thus the apparent c
ficient of friction is less than the interface coefficient of frictio
Furthermore the apparent friction coefficient decreases with
creasing speed even if the interface friction coefficient is spe
independent. This result, as well as~@12#!, supports the interpre
tation of certain friction behavior as a consequence of
dynamics of the system, rather than as strictly an interface p
erty ~@11#!.

A slip-pulse, at the interface between two elastic half-spac
traveling at anintersonic speed~between the lower shear wav
speed and the higher dilatational wave speed! was found by Co-
chard and Rice@20# using a numerical technique and the Praka
Clifton friction law. For the particular material combination stu
ied, the pulse traveled at a speed just below the slower dilatati
wave-speed and in the opposite direction of sliding of the slo
wave-speed material. In the present investigation, an analy
solution is obtained for an intersonic slip pulse with Coulom
friction. The problem is first formulated in terms of a periodic s
of slip-pulses. Then, through an appropriate limiting process
singular integral equation is obtained for a single pulse. This p
cedure allows the interface normal and shear stresses to be re
to the slip velocity~a generalization of the subsonic Weertm
solution!. An intersonic slip pulse is shown to exist for modera
values of friction and for modest differences in the material pr
erties. The behavior of these pulses is then studied in detail.

2 Problem Description
Consider two perfectly flat homogeneous and isotropic ela

half-spaces pressed against each other and sheared with re
tractionsp* andq* , respectively~Fig 1!. The ratio

m* [q* /p* (1)

is less than that required to cause the two bodies to slide
respect to each other, i.e.,m* ,m wherem is the interface coef-
ficient of friction. It is emphasized that theinterfacecoefficient of
friction m is the ratio of shear to normal contact pressure at
interfacewhich would cause local slipping to occur. Clearly, u
der these loading conditions, it is possible for the two bodies
remain in static equilibrium. However, we investigate here
possibility of relative motion of the two bodies withm* ,m, due
to the existence of periodic stick and slip regions which propag

Fig. 1 A periodic system of slip-pulses at the frictional inter-
face between two elastic bodies
82 Õ Vol. 68, JANUARY 2001
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along the interface with some intersonic wave speedc. Thus under
these conditions the quantitym* may be interpreted as theappar-
ent coefficient of friction, since sliding occurs with that ratio o
applied shear to normal tractions. Sufficiently far from the int
face the bodies move with relative velocityv0 in thex1-direction.
By taking an appropriate limit it will be shown that a solution fo
a single slip-pulse can be found for whichv0→0.

We consider perturbation displacements (û1 ,û2 ,û18 ,û28) in the
form of real nondispersive traveling waves with wave numberk as
given by, e.g., Comninou and Dundurs@3#

û15ReH (
m51

`

@D1m exp~mkz1x2!

1D2m exp~mkz2x2!#exp@ imk~x12ct!#J
û25ReH (

m51

`

@2 i z1D1m exp~mkz1x2!

2 i z2
21D2m exp~mkz2x2!#exp@ imk~x12ct!#J

û185ReH (
m51

`

@D3m exp~2mkz3x2!

1D4m exp~2mkz4x2!#exp@ imk~x12ct!#J
û285ReH (

m51

`

@ i z3D3m exp~2mkz3x2!

1 i z4
21D4m exp~2mkz4x2!#exp@ imk~x12ct!#J . (2)

This perturbation is taken with respect to the homogeneous re
ence state of stress given byt2252p* and t125q* . It is noted
that this reference state does not satisfy the frictional sliding c
dition at the interface. For a given wave speedc, for which zk is
real

z15A12~c/c1!2, z25A12~c/c2!2,
(3)

z35A12~c/c18!2, z45A12~c/c28!2

which requires that the magnitudes of the wave components d
as ux2u→`. Similarly for zk imaginary

z152sgn~c!iA~c/c1!221, z252sgn~c!iA~c/c2!221,
(4)

z352sgn~c!iA~c/c18!221, z452sgn~c!iA~c/c28!221

which constitute the radiation condition, i.e., waves cannot
generated atux2u5`. For intersonic speeds,c will be in a range
for which somezk are real and others are imaginary. Furthermo
in ~2!–~4!

c15Al12G

r
, c25AG

r
, c185Al812G8

r8
, c285AG8

r8

(5)

b5
c1

c2
5A2~12n!

122n
, b85

c18

c28
5A2~12n8!

122n8
, k5

c28

c2

wherec1 ,c2 are the dilatational and shear wave speeds, resp
tively, G is the shear modulus,l is the Lame´’s constant,n is the
Transactions of the ASME
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Poisson’s ratio, andr is the mass density. Quantities with a prim
~8! refer to the upper half-space~Fig. 1!. In addition to the wave
numberk, which defines the periodicity of the solution, there
the indexm. Thus the desired solutions are periodic in space w
wavelength 2p/k and consists of an infinite number of comp
nents, each with wave numbermk.

The continuity conditions pertain to the complete solution, i
the sum of the uniform and perturbation solutions. Written
terms of a moving coordinateh, the shear and normal stresses a
the normal displacements are continuous

t12~h,0!5t128 ~h,0!, t22~h,0!5t228 ~h,0!, u2~h,0!5u28~h,0!

h5x12ct, 2p/k<h<p/k (6)
Journal of Applied Mechanics
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where

t125GS ]û1

]x2
1

]û2

]x1
D1q* , t225~l12G!

]û2

]x2
1l

]û1

]x1
2p* .

(7)

Satisfaction of the continuity conditions yields

D1m5e1D4m , D2m5e2D4m , D3m5e3D4m ,

m51,2,3, . . . (8)

wheree1 ,e2 ,e3 are independent ofm and are given by
e15~G8/G!@2~~b8!2~11z2
2!~211z3

2!!12~212z2
22z2z31z3z41z2

2z3z41z2z3z4
2!

1~G8/G!~224z3z412z4
21~b8!2~211z3

2!~11z4
2!!#/$@~224z1z212z2

21b2~211z1
2!~11z2

2!!z3

1~G8/G!~2~221b2!z322b2z1
2z31z1~221~b8!212z2

22~b8!2z2
214z2z32~b8!2z3

21~b8!2z2
2z3

2!!#z4% (9)

e252$~G8/G!z2@z1~2412~b8!222~b8!2z3
214z3z4!2~221b2!z3~211z4

2!1b2z1
2z3~211z4

2!

1~G8/G!z1~224z3z412z4
21~b8!2~211z3

2!~11z4
2!!#%/$@~224z1z212z2

21b2~211z1
2!~11z2

2!!z3

1~G8/G!~2~221b2!z322b2z1
2z31z1~221~b8!212z2

22~b8!2z2
214z2z32~b8!2z3

21~b8!2z2
2z3

2!!#z4% (10)

e35$2214z1z222z2
22b2~211z1

2!~11z2
2!1~G8/G!@b2~211z1

2!~11z4
2!22~211z1z22z1z41z1z2

2z42z4
21z1z2z4

2!#%/

$@~224z1z212z2
21b2~211z1

2!~11z2
2!!z31~G8/G!~2~221b2!z322b2z1

2z31z1~221~b8!2

12z2
22~b8!2z2

214z2z32~b8!2z3
21~b8!2z2

2z3
2!!#z4%. (11)
ns.
The computations leading to~9!–~11! are quite complicated and
were performed using the Mathematica symbolic manipulat
software~Wolfram @21#!. Note that ifc is subsonic thene1 ,e2 ,e3
are real. However, if c is intersonic or supersonic (ucu
.Min(c2 ,c28)) thene1 ,e2 ,e3 are complex.

Now the mixed conditions which pertain to the periodic regio
of stick and slip, i.e.,

vS5 u̇̂18~h,0!2 u̇̂1~h,0!1v050, a,uhu,p/k, Stick Region
(12)

tS5t12~h,0!1mt22~h,0!50, uhu,a, Slip Region
(13)

are applied. The quantityvS , defined in~12!, is called theslip
velocity. By substituting~2! into ~12!

vS5v01ck ReH e0i (
m51

`

mD4m exp~ imkh!J ,

e05e11e22e321 (14)

is obtained. By using the integral transformation given by

D4m5
1

ce0mip E
2a

a

f~j!exp~2 imkj!dj, m51,2,3, . . . ,̀

(15)

the slip velocity becomes

vS5v01
k

p
ReH E

2a

a

(
m51

`

exp@ imk~h2j!#f~j!djJ . (16)

Using the identities~@22#!
ion

ns

(
n51

`

cosnx52
1

2
1p (

n52`

`

d~x22pn!, (
n51

`

sinnx5
1

2
cot

x

2
(17)

~16! results in

vS5v02
k

2p E
2a

a

f~j!dj1f~h!H~a2uhu!

1ReH ik

2p E
2a

a

cot
k~h2j!

2
f~j!djJ . (18)

It can now be seen that~18! will satisfy the stick condition~12!
provided thatf~j! is real and that the resultant condition

k

2p E
2a

a

f~j!dj5v0 (19)

is satisfied. Thus the slip velocity becomes

vS5f~h!H~a2uhu! (20)

and the slip velocity automatically vanishes in the stick regio
Furthermoref~h! is seen to be equal tovS in the slip region.

It remains to satisfy the slip stress condition~13!. By substitut-
ing ~2! into ~13!

tS5Gk ReH (
m51

`

~d12 imd2!mD4m exp~ imkh!J 1q* 2mp*

(21)

where

d152e1z11e2~z11z2
21!, d252e11b2z1

2e112e22b2e1
(22)
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is obtained, in whichd1 and d2 are real for subsonicc, but are
otherwise complex. Use of the identities~17! and the resultant
condition ~19! yields the singular integral equation

ReS d12 imd2

e0c D k

2p E
2a

a

cotkS h2j

2 Df~j!dj

1ImS d12 imd2

e0c Df~h!

5~m2m* !
p*

G
1v0 ImS d12 imd2

e0c D , 2a,h,a.

(23)

Thus ~23! subject to~19! represents a singular integral equati
for determining the slip velocity for prescribed material propert
and givenp* , m* , andm. The resultant condition allows for th
corresponding sliding velocityv0 to be determined. The width o
the pulse 2a is arbitrary.

For an isolated slip-pulse, as opposed to the periodic slip
stick zones considered thus far,k→0⇒v0→0 ~from ~19!!, and
~23! simplifies to

ReS d12 imd2

e0c D 1

p E
2a

a f~j!dj

h2j
1ImS d12 imd2

e0c Df~h!

5~m2m* !
p*

G
, 2a,h,a. (24)

Furthermore the shear and normal stresses become

t12/G5q* /G1Im~d1 /e0c!f~h!1Re~d1 /e0c!
1

p E
2a

a f~j!dj

h2j

(25)

t22/G52p* /G2Re~d2 /e0c!f~h!

1Im~d2 /e0c!
1

p E
2a

a f~j!dj

h2j
. (26)

It is interesting to observe that these results~25!–~26! generalize
the analogous subsonic results of Weertman@15# to the intersonic
and supersonic speed regimes. For subsonic speedsd1 ,d2 ,e0 are
all real and hence the second term in~25! and the third term in
~26! vanish. Furthermore the subsonic slip-pulse obtained by
ams@12# occurs at the speed for whichd150 which corresponds
to the slip wave speed or, as it is sometimes called, the gen
ized Rayleigh wave speed. In such a pulse the interface s
stress is equal to the remotely applied shear stress~25! and the
normal stress is linearly related to the slip velocity~26!. Thus a
constant slip velocity in the slip region gives rise to a const
change in the contact pressure such that~13! is satisfied in the slip
region. For supersonic speeds,d1 /e0c is pure imaginary and
d2 /e0c is pure real so that the third terms in~25! and~26! vanish
and thus the shear and normal stresses are linearly related t
slip velocity. This behavior allows for the slip pulse o
Nosonovsky and Adams@19# to occur at any supersonic spee
However, in the intersonic speed regime, all three terms in eac
~25! and ~26! are present.

It may appear that an algebraic solution of~24! is possible at
any speed for which the quantity Re$(d12imd2)/e0c% vanishes.
While such speeds exist and a solution given by

f~h!5f0 (27)

does satisfy the singular integral Eq.~24!, the corresponding in-
terfacial normal stresses are given by
84 Õ Vol. 68, JANUARY 2001
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t22/G52p* /G2Re~d2 /e0c!f0

1Im~d2 /e0c!
f0

p
logUa2h

a1hU, 2a,h,a, (28)

which has logarithmic singularities of opposite signs at the t
ends. Thus the requirement that the contact stresses be com
sive is violated, no matter how large the remotely applied norm
pressure.

Solutions of the form

f~h!5F~h!~a2h!a~a1h!b (29)

will now be considered. For the solution to be bounded at b
ends (a.0,b.0) the consistency condition is required, i.e.,

E
2a

a

~m2m* !~p* /G!~a2h!2a~a1h!2bdh50. (30)

It can readily be seen that this condition is violated, except for
case of global sliding withm5m* , and thus solutions of~24!
which are bounded at both ends do not exist.

Now consider a solution singular at one end, and bounded a
other (ab,0,21/2,a,1,21/2,b,1). A solution may be
obtained by following the procedure of Muskhelishvilli@23#.
Equivalently the results which are tabulated by Erde´lyi @24# may
be used which gives

g[b52a, f~h!5f0S a1h

a2h D g

(31)

tanpg52Re$~d12 imd2!/e0%/Im$~d12 imd2!/e0% (32)

f052~m2m* !~p* /G!~sinpg!/Re$~d12 imd2!/e0c%.
(33)

Finally the magnitude of the slip distanceUSlip may be determined
by

USlip52
1

c E2a

a

f~j!dj5~m2m* !~p* /G!2pag/

Re$~d12 imd2!/e0%. (34)

The speed of the slip-pulse is arbitrary, except that any ca
date solution must satisfy the following inequality constraints:

A: vS>0, uhu,a⇒Im$~d12 imd2!/e0c%>0

B: t22<0, uhu,a⇒Re$d2 /e0c%2Im$d2 /e0c%/tanpg>0,

and m* >2Re$d1 /e0c%/Im$md2 /e0c%

C: t22<0, uhu.a⇒2Im$d2 /e0c%/sinpg>0

and m* >2Re$d1 /e0c%/Im$md2 /e0c%

(35)

D: t121mt22,0, uhu.a⇒2Re$~d12 imd2!/e0c%/sinpg>0

E: 2t121mt22,0, uhu.a⇒Re$~d11 imd2!/e0c%/sinpy>0

and m* >2Re$d1 /e0c%/

Im$md2 /e0c%

It can be seen that the second equations in each ofB, C, andE are
redundant. Furthermore, by using~32!, it can be shown thatA and
D are also equivalent. Thus there are a total of five independ
inequality constraints. The effect of the inequality constraints is
severely limit the range of speeds of the slip-pulse.

3 Results and Discussion
Results for a slip-pulse have been obtained and are show

Figs. 2–8. In Figs. 2–4 are results corresponding to the mate
properties used in@8# and @16#, i.e., k55/6, r8/r55/6, and
Transactions of the ASME
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n5n851/4. Figure 2 gives the order of the singularity~2g! at the
leading edge versus the negative of the normalized wave s
(2c/c2) for four different values of the friction coefficient. Not
that the effect of the inequalities is to severely restrict the rang
possible wave speeds to an extremely narrow band which is
below the dilatational wave speed of the lower wave-speed m
rial. The smaller the friction coefficient, the narrower is the wav

Fig. 2 The order of the singularity „Àg… versus the negative of
the normalized wave speed „Àc Õc 2… for kÄr8ÕrÄ5Õ6, nÄn8
Ä1Õ4 and for various values of the friction coefficient

Fig. 3 The minimum value of m* versus the negative of the
normalized wave speed „Àc Õc 2… for kÄr8ÕrÄ5Õ6, nÄn8Ä1Õ4
and for various values of the friction coefficient

Fig. 4 The normalized slip distance „USlip Õa…Õ„mÀm* …„p * ÕG…

versus the negative of the normalized wave speed „Àc Õc 2… for
kÄr8ÕrÄ5Õ6, nÄn8Ä1Õ4 and for various values of the friction
coefficient
Journal of Applied Mechanics
eed

of
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speed range. The direction of wave propagation is opposite to
of sliding of the lower wave-speed material and its maximu
magnitude is slightly less thanc18 . Also note that the order of the
singularity, which always occurs at the leading edge of the s
zone, is especially small.

Another effect of the inequality constraints is to restrict t
minimum value of the ratio of remotely applied shear to norm

Fig. 5 The maximum value of the order of the singularity
„ÀgMax… versus the square of the shear wave speed ratio „k2

…

for various values of r8Õr, with mÄ1 and nÄn8Ä1Õ4

Fig. 6 The minimum value of the friction coefficient for which
a slip-pulse exists „m̄* … versus the square of the shear wave
speed ratio „k2

… for various values of r8Õr, with mÄ1 and n
Än8Ä1Õ4

Fig. 7 The normalized slip distance „USlip Õa…Õ„mÀm* …„p * ÕG…

versus the square of the shear wave speed ratio „k2
… for vari-

ous values of r8Õr, with mÄ1 and nÄn8Ä1Õ4
JANUARY 2001, Vol. 68 Õ 85
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pressure~m* ! for which a slip-pulse can exist. Figure 3 shows t
minimum value ofm* versus2c/c2 for four values of the friction
coefficient. The four curves are identical within the regions
which they overlap. Each curve begins at the lowest accept
wave speed with a minimum valuem* equal to the friction coef-
ficient m. As the pulse-speed increases towardc18 , the minimum
value ofm* reaches a value which we denotem̄* . Not only ism̄*
independent ofm, but the minimum value ofm for which a slip-
pulse exists also corresponds tom̄* . In Fig. 4 is shown the nor-
malized slip distance (USlip /a)/(m2m* )(p* /G) versus normal-
ized speed2c/c2 for various values of the friction coefficient
For fixed m the slip distance does not vary significantly wi
speed, but is proportional to the pulse width 2a, the remotely
applied pressurep* /G, and the quantity (m2m* ). Thus the slip
distance is greatest when the remotely applied shear stre
smallest, subject to the lower bound onm* discussed in connec
tion with Fig. 3.

Figures 5–8 give results for a range of material combinatio
with m51 ~Figs. 5–7! and withn5n851/4 ~Figs. 5–8!. Without
loss of generality the lower shear wave speed material is take
be the upper half-space. In Fig. 5 is shown the maximum valu
the order of the leading edge singularity (2gMax) versus the
square of the shear wave speed ratio (k2) for various values of the
density ratio~r8/r!. Note that each curve starts atk252/3, which
corresponds toc185&c2 . This speed is known as the Eshelb
singular dislocation velocity~@25#! and corresponds to the spee
at which an edge dislocation in an isotropic medium can m
without a shock wave appearing in its displacement field. T
value of 2gMax increases as the density ratio increases for fix
shear wave speed ratio. In Fig. 6 is shown the parameterm̄*
~which represents the minimum value ofm and ofm* for which a
slip-pulse occurs with a given material combination! versusk2 for
various values ofr8/r. The parameterm̄* decreases as the densi
ratio decreases for fixed shear wave-speed ratio. The variatio
the normalized slip distance with the square of the shear wa
speed ratio for different values of the density ratio is shown
Fig. 7 and for different values of the friction coefficient in Fig.
~with r8/r51!. Note that as the density ratio and/or the frictio
coefficient decreases, the magnitude of the slip distance incre
This trend is, however, more pronounced with changes in
friction coefficient than it is with changes inr8/r.

4 Conclusions
The possible existence of an intersonic pulse at the frictio

interface between two different elastic half-spaces has been in

Fig. 8 The normalized slip distance „USlip Õa…Õ„mÀm* …„p * ÕG…

versus the square of the shear wave speed ratio „k2
… for vari-

ous values of m with r8ÕrÄ1 and nÄn8Ä1Õ4
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tigated. The interface normal and shear stresses have been re
to the slip velocity, which yields a generalization of the subso
Weertman solution. An intersonic slip pulse is shown to exist
sufficient friction and for modest mismatches in the material co
binations. These slip-pulses travel at a speed just below the slo
dilatational wave speed; travel in the opposite direction of slid
of the lower wave-speed material; and are weakly singular at
leading edge and bounded at the trailing edge.
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Shear Coefficients for
Timoshenko Beam Theory
The Timoshenko beam theory includes the effects of shear deformation and rotary i
on the vibrations of slender beams. The theory contains a shear coefficient whic
been the subject of much previous research. In this paper a new formula for the
coefficient is derived. For a circular cross section, the resulting shear coefficient th
derived is in full agreement with the value most authors have considered ‘‘best.’’ S
coefficients for a number of different cross sections are found.
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Introduction
Timoshenko@1# was the first to introduce shear deformation,

well as rotary inertia, into the derivation of vibrating beam theo
He introduced a shear coefficient to account for the variation
the shear stress across the cross section. Timoshenko, in tha
paper, used a value of 2/3 for a rectangular cross section. M
authors have found and used different values. Kaneko@2# did an
excellent review of all the various shear coefficients that h
been tried. His conclusion was that the values implied in Timo
enko’s@3# come the closest to experimental results. Those va
are k5(6112n16n2)/(7112n14n2) for the circle andk5(5
15n)/(615n) for the rectangle. Those coefficients were foun
for the circle by matching with the Pochhammer-Chree solut
for long wavelengths, and for the rectangular by matching w
the plane stress solution. I will refer to those two values as
moshenko’s values. Cowper@4# derived shear coefficients fo
various cross sections for the static problem. His values ag
with Timoshenko’s values only for the case when Poisson’s r
is zero.

In Hutchinson@5# a highly accurate series solution for a com
pletely free beam of circular cross section was compared w
Timoshenko beam theory and it was concluded that Timoshen
value was best for long wave lengths. Leissa and So@6# developed
a highly accurate Rayleigh-Ritz solution for the circular cross s
tion and compared their solution to Timoshenko beam theory
ing Cowper’s shear coefficient. In a comment of that pap
Hutchinson@7#, it was shown that for long wavelengths, use
Timoshenko’s values of shear coefficient gave better results
use of Cowper’s. Kaneko@2# also made comparisons with th
experimental work of Spence and Seldin@8#, Spinner, Reichard,
and Tefft @9#, and his own experimental results for both the c
cular and rectangular cross sections.

In Hutchinson and Zilmer@10# a three-dimensional series solu
tion and a plane stress solution for the completely free beam
compared to the Timoshenko beam theory for rectangular c
sections. The plane stress solution compared very well with
Timoshenko beam theory using Timoshenko’s shear coeffici
We were not able to use enough terms in the series solution t
a close comparison. For the solid cylinder problem the orde
the characteristic matrix is the number of terms in the axial dir
tion, whereas, for the rectangular cross section the order of
matrix isnxny1nynz1nznx wherenx , ny , andnz are the number
of terms in thex, y, and z-directions, respectively. Kaneko@2#

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
7, 2000; final revision, August 15, 2000. Associate Editor: R. C. Benson. Discus
on the paper should be addressed to the Editor, Professor Lewis T. Wheeler, D
ment of Mechanical Engineering, University of Houston, Houston, TX 77204-47
and will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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concluded on the basis of the experimental results that Timos
ko’s value of the shear coefficient was best for this problem
well.

In Hutchinson and El-Azhari@11# a series solution for the com
pletely free hollow cylinder was compared with the Timoshen
beam theory. Armena`kas, Gazis, and Herrmann@12# presented
extensive tabulated results for infinitely long hollow circular cy
inders. Leissa and So@13# gave accurate results for a free end
hollow circular cylinder. These three references will be used
check the new shear coefficient derived for this problem.

The approach used in this paper, to get around the discrepan
inherent in beam theory, is to choose a ‘‘best’’ guess for the str
field and a ‘‘best’’ guess for the displacement field. A variation
form is then used in which these two fields can be incompatib
The variational form used is the Hellinger-Reissner principle,
Reissner@14#. The results of this approach are then compared
the Timoshenko Beam solution for long wavelengths, and an
pression for the new shear coefficient is found. To set up the b
of comparison, the elementary Timoshenko beam formulation
carried out first.

Elementary Timoshenko Beam Formulation
The sign convention for beam geometry and shear and mom

used throughout this paper is shown in Fig. 1. The assumptio
made that the beam is symmetric~i.e., I yz50!. The rotation of the
cross section is denoted asc. The slope of the displacementv is
made up of two effects. The rotation of the cross section plus
additional slope caused by the shear. If the shear were con
over the cross section the additional slope would beV/GA. The
fact that it is not constant leads to the definition of a shear co
ficient k, such that the additional slope isV/kGA. Thus,

v85c1
V

kGA
(1)

where primes denote differentiation with respect tox. The mo-
ment curvature relation is

M5EIzc8. (2)

Summation of forces in the vertical direction on a different
element gives

V85rAv̈ (3)

where dots represent derivatives with respect to time. Summa
of moments on a differential element gives

M 81V5rI zc̈. (4)

Eliminating V and M from the above four equations gives th
following two equations:

EIzc91~v82c!kGA5rAv̈ (5)
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~v92c8!kGA5rAv̈. (6)

In order to do the comparisons necessary in the next step
necessary to solve these equations for a wavelengthL and then let
the wavelength increase. To this end the displacementv and the
rotationc are expressed as follows:

v5B sin~ax!sin~vt ! (7)

c5C cos~ax!sin~vt !. (8)

The wavelengthL is

L5p/a. (9)

Substituting Eqs.~7! and ~8! into ~5! and ~6! gives

F akGA 2EIza
22kGA1rI zv

2

2a2kGA1rAv2 kGAa
G H B

CJ 5 H0
0J .

(10)

Setting the determinant of the coefficients in Eq.~10! to zero gives

l42a41
I z

A
a2l4S 11

E

kGD2l8
I z

2

A2

E

kG
50 (11)

where the frequency parameterl is defined as

l45
rAv2

EIz
. (12)

The solution for a simple beam isa5l, and as the wavelength
increases botha andl approach zero. The first two terms in E
~11! are fourth order, the third term is sixth order, and the l
term is eight order. For comparisons in the next section the eig
order term will be neglected.

New Timoshenko Beam Formulation
The displacement and stress fields are described as follow

u52yc~x,t ! (13)

v5w~x,t !1
v
2

y2c82
n

2
z2c8 (14)

w5nyzc8 (15)

sx52Eyc8 (16)

sy50 (17)

sz50 (18)

tyz50 (19)

txy5
V

I z
f 1~y,z! (20)

txz5
V

I z
f 2~y,z!. (21)

The displacement field is chosen consistent with the assump
that plane cross sections remain plane after deformation. The
mal stresses and the shear stresstyz are also consistent with thi
assumption. The shearing stressestxy andtxz are chosen consis
tent with the distribution in a tip-loaded cantilever. The tip-load

Fig. 1 Coordinates and positive moment and shear sign con-
vention for the uniform beam
88 Õ Vol. 68, JANUARY 2001
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cantilever is the only beam loading case for which an exact s
tion is available in the literature. The functionsf 1 and f 2 , defined
above, are the in-plane distribution of the shearing stressestxy
andtxz . The tip-loaded cantilever solution can be found in Lo
@15#. That solution yields

f 152
1

2~11n! S ]x

]y
1

ny2

2
1

~22n!z2

2 D (22)

f 252
1

2~11n! S ]x

]z
1~21n!yzD (23)

wherex(y,z) is a harmonic function which satisfies the bounda
condition

]x

]n
52nyS ny2

2
1

~22n!z2

2 D2nz~21n!yz (24)

on the boundary of the cross section. Solutions forx are available
in Love @15# and Cowper@4# as well as in a number of textbooks
Some interesting properties off 1 and f 2 are as follows:

E
A
f 1~y,z!dA5I z (25)

E
A
f 2~y,z!dA50. (26)

The shearV in Eqs. ~20! and ~21! will be expressed as in the
previous sections by combining Eqs.~2! and ~4! thus,

V5I z~rc̈2Ec9!. (27)

The dynamic form of the Hellinger-Reissner principle for th
problem can be written as

dE
t1

t2E
Vol

$sxu,x2sx
2/2E1txy~u,y1v,x!2txy

2 /2G

1txz~u,z1w,x!2txz
2 /2G2

1
2 ru,t

22
1
2 rv,t

2

2
1
2 rw,t

2%dVol dt50. (28)

Introduction of the definitions in Eqs.~13! to ~21! and integration
over the cross-sectional area yields

dE
t1

t2E
L
H 1

2
EIzc821I z~Ec92rc̈!~c2w8!

2
n

2
~Ec92rc̈!c9C12

1

2G
~2Ec91rc̈!2C22

1

2
rI zċ

2

2
1

2
rFAẇ21nẇċ8~ I z2I y!1

n2

4
ċ82C3G J dLdt50 (29)

where the area integrals are defined as follows:

A5E
A
dA Iz5E

A
y2dA Iy5E

A
z2dA (30)

C15E
A
~ f 1y22 f 1z212 f 2yz!dA (31)

C25E
A
~ f 1

21 f 2
2!dA (32)

C35E
A
~y41z412y2z2!dA. (33)

Eliminating higher order terms and expanding the expression
Eq. ~29! yields
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dE
t1

t2E
L
H 1

2
EIzc821EIzc9c2EIzc9w82rI zc̈c1rI zc̈w8

2
nE

2
C1c922

E2

2G
C2c922

1

2
rI zċ

22
1

2
rAẇ2

2
nr

2
~ I z2I y!ẇċ8J dLdt50. (34)

Applying the Calculus of Variations to Eq.~34! yields the follow-
ing two equations:

c92w-1
r

E
ẅ81

C4

I z
c8-2

r

E
c̈2

nr

2E S 12
I y

I z
D ẅ850 (35)

c-2
r

E
c̈81

rA

EIz
ẅ1

nr

2E S 12
I y

I z
D c̈850 (36)

where

C452nC12
E

G
C2 . (37)

Treatingw andc in the same wayv andc were treated in Eqs.~7!
and ~8! yields the following:

F a32C5al4 2a21
C4

I z
a41

I z

A
l4

2l4 a32C5al4
G H B

CJ 5 H0
0J (38)

where

C55
I z

A F12
n

2 S 12
I y

I z
D G . (39)

Setting the determinant of the coefficients in Eq.~38! to zero,
noting thatl8 can be expressed asl6a2 and dividing bya2 gives
s

h

Journal of Applied Mechanics
l42a412C5a2l42
C4

I z
a2l42

I z

A
l62C5

2l850. (40)

The fourth-order terms in Eqs.~11! and~40! are identical. Equat-
ing the sixth-order terms in Eqs.~11! and~40! and solving for the
shear coefficientk yields

k52
2~11n!

F A

I z
2 C41nS 12

I y

I z
D G (41)

whereC4 follows from Eqs.~31!, ~32!, and~37! as

C452E
A
@n~ f 1y22 f 1z212 f 2yz!12~11n!~ f 1

21 f 2
2!#dA.

(42)

Shear Coefficients for Various Cross Sections
In this section shear coefficients for a variety of cross sect

are derived from Eq.~41!. With the exception of the thin-walled
cross sections, all of the following results were calculated us
the value ofx taken from Love@15# ~pp. 335–337!. It should be
noted that Love used the coordinatesx andy in the plane of the
cross section, whereas, I am usingy and z in the plane. To get
from Love’s notation to mine changex to y andy to z. The func-
tions f 1 and f 2 are calculated from Eqs.~22! and ~23!, and the
coefficientC4 is calculated from Eq.~42!. All calculations in this
section were carried out using Mathematica.

Circular Cross Section.

k5
6~11n!2

7112n14n2 (43)

Hollow Circular Cross Section.
k5
6~a21b2!2~11n!2

7a4134a2b217b41n~12a4148a2b2112b4!1n2~4a4116a2b214b4!
(44)

whereb is the outer radius anda is the inner radius.

Elliptical Cross Section.

k5
6a2~3a21b2!~11n!2

20a418a2b21n~37a4110a2b21b4!1n2~17a412a2b223b4!
(45)
e
tary
where the bounding curve is defined asy2/a21z2/b251.

Rectangular Cross Section.

C45
4

45 a3b~212a2215na215nb2!

1(
n51

` 16n2b5S npa2b tanhS npa

b D D
~np!5~11n!

(46)

k52
2~11n!

F 9

4a5b
C41nS 12

b2

a2D G (47)

where the depth of the beam~y-direction! is 2a and the width of
the beam~z-direction! is 2b.

Thin-Walled Cross Sections. For thin-walled cross section
the shear stress distribution can be found from the elemen
shear formula. That value of shear stress can be used to find tf 1
tary
e

and f 2 required in Eq.~42!. As an example of this consider th
thin-walled circular cylinder. The shear stress from the elemen
formula is found as

t5
VO

Ib
52tux5

V

I
a2 sinu. (48)

The shear stress can then be expressed as

tyx52tux sinu5
V

I
a2 sin2 u (49)

tzx5tux cosu52
V

I
a2 sinu cosu. (50)

From the definitions off 1 and f 2 it follows that

f 15a2 sin2 u (51)

f 252a2 sinu cosu. (52)

The shear coefficient which comes from this is
JANUARY 2001, Vol. 68 Õ 89
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Evaluation and Discussion of Results
The shear coefficient for the circular cross section in Eq.~43!

corresponds exactly to the shear coefficient implied in Timosh
ko’s 1922 paper~@3#!. As pointed out in the Introduction this
coefficient has been widely accepted as ‘‘correct’’ and verified
both experiment and by accurate three-dimensional solutions

The shear coefficient for a hollow circular cross section in E
~44! equals the one for the circular cross section in Eq.~43! when
a goes to zero. Comparisons of the new coefficient with Cowpe
coefficient are made in Table 1 using the accurate frequency
ues from Leissa and So@13# for the completely free beam. It ca
be seen from this table that for long wavelengths the frequen
are closer using this new coefficient than Cowper’s coefficie
Comparisons were also made to the infinitely long hollow cyl
der. Over 200 numerical values given in Armena`kas et al.@12#
were compared to the values computed using the new coeffic
and Cowper’s coefficient. A sample of these results is given
Table 2. Again, it can be seen that the new coefficient gives be
frequencies than the Cowper coefficient. The hollow cylinder
lution was also used to determine the range of applicability of
Timoshenko beam theory for hollow cylinders. Figure 2 show
plot of the shear coefficient which would be required to match
infinitely long three-dimensional theory with the Timoshen
beam theory. In this plot the new shear coefficient values are
straight horizontal lines. It can be seen that the required sh
coefficient approaches the new shear coefficient value as
diameter-to-wave-length ratioD/L approaches zero. For the thin
walled cylinder~a50.99 anda50.9! the D/L would have to be
less than about 0.5 to produce reasonable frequencies usin

Table 1 Comparison of the frequencies from Table 9 in Leissa
and So †13‡ with the frequencies from Timoshenko beam
theory using the new shear coefficient and Cowper’s shear co-
efficient. Di ÕDo is the ratio of the inner diameter to the outer
diameter. S and A refer to the symmetric and antisymmetric
modes. The ‘‘num’’ in the second column refers to the mode
number. The tabulated frequencies are vR0ArÕG where R0 is
the outer radius. L ÕD0Ä5 and nÄ0.3.

Table 2 Comparison of the frequencies from Armena `kas et al.
†12‡ with the frequencies from Timoshenko beam theory using
the new shear coefficient and Cowper’s shear coefficient. H is
the thickness of the cylinder wall R is the mean radius of the
wall, L is the wavelength and VÄvHArÕGÕp.
90 Õ Vol. 68, JANUARY 2001
en-

by

q.

r’s
val-

ies
nt.
n-

ient
in

tter
o-

the
a

he
o
the
ear
the
-

Ti-

moshenko theory. Fora50.5 theD/L would have to be less than
about 3.5, whereas for a solid cylinder (a50) theD/L could be
as large as about 5.

The shear coefficient for an elliptical cross section in Eq.~45!
equals the one for the circular cross section fora5b. Plots of the
reciprocal of the shear coefficient as a function of the width-
depth ratio of the elliptical cross section are given in Fig. 3. T
plots show both the new shear coefficient~solid line! and the
Cowper coefficient~dashed line! for values of Poisson’s Ratio o
0.0, 0.25, and 0.5. For a Poisson’s ratio of 0.0 the new sh
coefficient and Cowper’s shear coefficient coincide.

The new shear coefficient for the rectangular cross section
responds to the Cowper coefficient for a Poisson’s ratio of zero
corresponds to Timoshenko’s value when the width dimensio
much less than the depth dimension, but it is a function of
width-to-depth ratio. None of the many values listed in Kane
@2# have the shear coefficient as a function of the width-to-de
ratio, although Cowper states, ‘‘It is remarkable thatK is indepen-
dent of the aspect ratio of the rectangle.’’ Figure 4 shows a plo
the reciprocal of the shear coefficient as a function of the wid
to-depth ratio for values of Poisson’s ratio of 0.0, 0.25, and 0
As mentioned in the Introduction, the way that Timoshenko
value was found was to match the plane stress solution. This
coefficient does match the plane stress solution when the wi
to-depth ratio is small. A comparison to the three-dimensio
series solution is shown in Table 3. The series solution is fo
completely free beam. The number of terms used in the se
were chosen to make the number roughly correspond to the
mensions, and to keep the order of the characteristic matrix
than 2000. The example was chosen so that the depth and le
of the beam remain constant so that if the shear coefficient w

Fig. 2 Shear coefficient versus outer diameter to wavelength
ratio for an infinitely long hollow cylinder. a is the ratio of the
inner to outer radius. Straight horizontal lines are the new
shear coefficient and the curved lines are the coefficient which
is required to match the true solution.

Fig. 3 Shear coefficient reciprocal versus width-to-depth ratio
for an elliptical cross section for different values of Poisson’s
ratio. „ … new coefficient; „ … Cowper’s coefficient.
Transactions of the ASME
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not changing the dimensionless frequency would remain const
If one were to use Cowper’s coefficient the shear coefficie
would be 0.8571 and the frequency would be 0.10785. If Timos
enko’s coefficient were used the shear coefficient would be 0.8
and the frequency would be 0.10790. It can be seen in the ta
that the frequency values for the three-dimensional solution a
the Timoshenko beam solution using the new coefficient follo
the same trend.

Experimental results for the rectangular cross section have b
limited to the square cross section with the exception of the w
of Spinner et al.@9#. The work of Spinner et al.@9# did not contain
enough data to prove or disprove the dependence of the s
coefficient on the aspect ratio. Kaneko@2# reduced the Spinner
et al.@9# data on the assumption that the shear coefficient was
a function of the aspect ratio and came out with a shear coeffic
which was a little less than the Timoshenko’s value, whereas
new coefficient is greater. Kaneko’s@2# own experimental results
for a square cross section agree completely with Timoshenk
value. Spence and Seldin@8# found the shear coefficients which
would match their experimental results for three different squ
cross sections. Those results are shown in Table 4 along with
values of Timoshenko’s coefficient and the new coefficient. T
best that can be said of the experimental comparisons is that
new shear coefficient is not out of line with experimental resul
but the experimental results neither confirm nor negate the dep
dence of the new shear coefficient on the aspect ratio of the r
angular beam.

Fig. 4 Shear coefficient reciprocal versus width-to-depth ratio
for a rectangular cross section for different values of Poisson’s
ratio

Table 3 Comparison of frequencies found using a three-
dimensional series solution „3-D v… with frequencies found us-
ing the new shear coefficient „New v…. The n x , n y , and n z are
the number of terms in the series in the x , y , and z-directions,
respectively. L Õ2 is the half-length, a is the half-depth, and b is
the half-width of the beam. The new shear coefficient is in the
last column. Poisson’s ratio was chosen as 1 Õ2 in order to pro-
duce the greatest change with aspect ratio. The tabulated fre-
quencies are v2aArÕG.

Table 4 Spence and Seldin †8‡ experimental determination of
shear coefficient compared to the new coefficient, Timoshen-
ko’s coefficient, and Cowper’s coefficient
Journal of Applied Mechanics
ant.
nt
h-

824
ble
nd
w

een
ork

hear

not
ient
the

o’s

are
the
he
the

ts,
en-

ect-

The use of the thin-wall approximation for calculation of th
thin-walled circular cylinder led to exactly the same result th
could be found by lettinga approachb in Eq. ~44! for the thick-
walled cylinder. This approach is applicable to any thin-wall
beams such as box beams or wide flange beams.

Static Problems
The main thrust of this paper has been concerned with the

namic problem but since the work of Cowper@4# was for the static
problem a brief look at the static problem is in order. The gove
ing equations for the static problem corresponding to Eqs.~36!
and ~37! can be found to be

c2w81
C4

I z
c950 (54)

c-50. (55)

Comparing the solution of these equations for the end-loaded
tilever to the solution of the beam including the shear deformat
lead to the following equation for the shear coefficient:

ks52
2~11n!I z

2

AC4
. (56)

This coefficient was found for the deflection of the original ce
roidal axis. If the deflection is for the mean deflection of the cro
section, as was done by Cowper@4#, then the expression become

ksc52
2~11n!

F A

I z
2 C41

n

2 S 12
I y

I z
D G . (57)

Note, that the half in the denominator makes this coefficient d
ferent from the dynamic coefficient defined in Eq.~41!. This co-
efficient corresponds to Cowper’s coefficient only when Poisso
ratio equals zero. For the cases of the circular cross section
the hollow circular cross section this new static coefficient is
same as the dynamic coefficients given in Eqs.~43! and ~44!.

Conclusions
The new shear coefficient is in complete agreement with

values that have been found from three-dimensional elasti
theory for the circular cross section and the plane stress solu
For the hollow circular cross section it is also shown by compa
son to three-dimensional elasticity to be correct. For rectang
cross sections the new coefficient was found to be a function
the aspect ratio. Previous researchers have all either assumed
not be a function or have derived it in such a way that it was
a function of the aspect ratio. Comparison to a three-dimensio
series solution indicates that the new coefficient is probably c
rect, but experimental evidence is inconclusive.
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@12# Armenàkas, A. E., Gazis, D. C., and Herrmann G., 1969,Free Vibrations of

Circular Cylindrical Shells, Pergamon Press, Oxford, UK.
@13# Leissa, A. W., and So, J., 1997, ‘‘Free Vibrations of Thick Hollow Circul

Cylinders From Three-Dimensional Analysis,’’ ASME J. Vibr. Acoust.,119,
pp. 89–95.

@14# Reissner, E., 1950, ‘‘On a Variational Theorem in Elasticity,’’ J. Math. Phy
29, pp. 90–95.

@15# Love, A. E. H., 1944,A Treatise on the Mathematical Theory of Elasticit,
Dover, New York.
Transactions of the ASME



on the
d the
ither
the

new
are

ith a
te.

. The
in a

ional
ration
show

to the
the

as the
S. Zhang

K. J. Hsia1

Mem. ASME,

Department of Theoretical
and Applied Mechanics,

University of Illinois at Urbana-Champaign,
Urbana, IL 61801

Modeling the Fracture of a
Sandwich Structure due to
Cavitation in a Ductile Adhesive
Layer
The strength and durability of adhesively bonded sandwich structures often depend
mechanisms of fracture, which in turn depend on the properties of the adhesive an
microstructures of the interface. When the thin adhesive layer is ductile, cavitation e
within the layer or along the interface is often the dominant failure mechanism. In
present paper, fracture due to cavity growth in a thin ductile layer is analyzed. A
method utilizing fluid mechanics solutions is developed. Solutions of fluid flow field
used to approximate the plastic deformation field in the corresponding solid body w
cavity. The equilibrium condition is satisfied by using the principle of virtual work ra
Stress-separation curves due to cavitation in the thin layer can thus be obtained
method is validated by reevaluating the one-dimensional problem of cavity growth
sphere—a problem for which an exact, analytical solution exists. A two-dimens
plane strain cavitation problem is analyzed using the new method. The stress-sepa
curves and the fracture resistance due to this mechanism are obtained. The results
that both the stress-separation curves and the fracture resistance are sensitive
strain-hardening exponent and the initial void size, but not the yield strength of
material. The new method has clear advantages over numerical methods, such
finite element method, when parametric studies are performed.
@DOI: 10.1115/1.1346678#
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1 Introduction
The strength and durability of sandwich structures consisting

two ceramic or metal pieces bonded by a thin adhesive layer
determined by various failure mechanisms. These fracture me
nisms include interfacial debonding and other processes suc
cavitation or microcracking within the adhesive layer or at t
interface. Identifying and understanding the failure mechanism
these structures will greatly enhance our ability to design be
more durable structures.

The failure mechanisms, however, are ultimately determined
the properties of the adhesive and by the microstructures of
interface in sandwich structures. The current research stems
the need to tailor the surface microstructures of aluminum pa
by surface treatments in preparation for adhesive bonding~see,
e.g., @1,2#!. Within the constraints of surface treatment techn
ogy, a guideline to achieve an optimized microstructure is hig
desirable.

In many such structures, the adhesive is often a soft or du
phase. It may be a polymer-based material for joints in airc
structures, or ductile metal in metal/ceramic composites. Th
have been many studies on failure mechanisms within a du
layer bonding two substrate pieces together~@3–7#!. When the
adhesive layer is sufficiently soft, the failure process is cra
propagation by void growth and coalescence within the duc
layer or along the interface. In this case, a large hydrostatic st
is developed in the ductile layer due to the constraint on pla
flow by the substrate, leading to void nucleation ahead of

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, O
1, 1999; final revision, July 19, 2000. Associate Editor: B. Moran. Discussion on
paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
of
are
ha-

h as
he
s in
ter,

by
the
rom
els

l-
ly

tile
aft
ere
tile

ck
tile
ress
tic

the

crack tip. The location and density of void nucleation, however
often related to the microstructures of the interface, such as in
pore density and interface roughness. For given microstructu
the initial void density can be considered as given. Failure of s
sandwich structures is then directly related to the microstructu
of the interface.

Fracture process of a material can be characterized by
stress-separation curve ahead of the crack tip. For purely br
fracture of crystals, such stress-separation curves can be de
from the interatomic potentials. When nonlinear processes are
volved, however, derivations of such stress-separation cu
must invoke micromechanisms during fracture. For example, p
tic dissipation must be taken into account in the case of ela
plastic fracture. Analyses of crack growth resistance due to pla
dissipation were carried out by Tvergaard and Hutchinson@8,9#,
who identified several dimensionless groups of material par
eters characterizing the fracture process. An equivalent str
separation curve for fracture due to cavity growth and coalesce
may be derived from the detailed study of the cavitation proce
In the present paper, failure due to cavity growth and coalesce
will be studied by analyzing the stress-separation curves du
cavity growth.

Cavitation has been studied by many researchers since
1960s. The pioneer work by McClintock@10# revealed that the
volume expansion rate of a long cylindrical cavity in a nonha
ening material subjected to transverse tensile stress increase
ponentially with the transverse stress. Rice and Tracey@11# ana-
lyzed the growth of a single spherical void embedded in
infinite body subjected to remote uniform tensile stresses. T
found that the ratio of void growth rate to remote strain rate
creases exponentially as the ratio of mean normal stress to y
stress increases. Their analysis also predicted that void grow
mainly due to volume change rather than shape change of the
when the remote normal stress is large. Both the above anal
were carried out on an infinite body, which is inappropriate
cavities in a confined ductile layer. Needleman@12# and Anders-
son @13# studied void growth numerically in a finite body usin
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the finite element method. In these studies the interaction betw
voids was taken into account, but the amount of cavity grow
was limited. More recently Tvergaard@14# analyzed void growth
in a thin, ductile layer between ceramics using finite elem
method, and employed a remeshing technique for the final s
of growth. These numerical studies require tremendous compu
power, and are usually rather time-consuming.

If the material of the ductile layer obeys an elastoplastic c
stitutive law, the nonlinearity of the governing equations seem
exclude the possibility of obtaining exact solutions for all but t
one-dimensional case studied by McClintock@10# and Huang
et al. @15#. In the present paper, to derive the stress-separa
curves for a material undergoing cavitation in a thin ductile lay
we develop a novel approach to finding an admissible deforma
field around the void. The approach utilizes fluid mechanics so
tions of a point source in a finite unit cell, and approximates
plastic deformation field with a fluid flow field. The appropriat
ness of the approach is verified by reevaluating the spheric
symmetric cavitation problem for which an analytical solution e
ists ~@10,15#!. A two-dimensional plane strain problem is the
analyzed to obtain the stress-separation relation of a unit cell
a center cavity. The results show that the stress-separation
tions depend not only on the material properties but also on
geometrical parameters~microstructures!, such as initial void size
and void spacing.

2 Spherically Symmetric Cavitation
We begin our discussion by considering the spherically sy

metric cavitation problem. Consider a spherical void centered
an isotropic, rigid-plastic sphere~either perfectly plastic or strain
hardening without elastic response! subjected to hydrostatic ten
sionss ~see Fig. 1!. A uniaxial relation between the true stress,s,
and the logarithmic strain,«, of the solid is given by

s/sY5 f ~«!5U E

sY

«UN

sgn~«! (1)

where sY is the tensile yield strength of the solid,E is the
Young’s Modulus, N is the hardening exponent (0<N<1),
sgn(«) represents the sign of«. The limit N50 corresponds to a
rigid-perfectly plastic material.

Two different methods to obtain the relation between the
drostatic stress and the void expansion are presented. One m
is based on classical plasticity theory in solid mechanics. T
other employs a fluid mechanics approach, and treats the void
point source of material flowing outward under the applied stre
94 Õ Vol. 68, JANUARY 2001
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With the latter the plastic deformation is to be represented b
potential flow generated from a point source. Both methods
capable of solving this one-dimensional cavitation problem a
lytically, as shown below.

2.1 Solid Mechanics Method. In what follows, capital let-
ters stand for variables in the initial configuration and lowerca
ones stand for variables in the current, deformed configurat
Let R0 and r 0 be the radii of the cavity in the initial and curren
configuration, andR1 andr 1 be the radii of the outer boundary i
the initial and current state, respectively~Fig. 1!. By symmetry,
the true strain components in spherical coordinates (r ,u,w) are

«u5«w52
1

2
« r52 ln

r

R
(2a)

«e52lnS r

RD5« r (2b)

where«e is the von Mises equivalent strain, defined as

«e5A2

3
« i j « i j (3)

where« i j ( i , j 5r ,u,w) are the logarithmic strain components, an
the summation convention applies in Eq.~3!. The equilibrium
condition in terms of radial stresss r and hoop stresssu in the
current configuration is

ds r

dr
1

2

r
~s r2su!50. (4)

The von Mises equivalent stress in the spherically symmetric c
can be expressed as

se5s r2su . (5)

Assuming that the material obeysJ2-deformation theory, i.e., the
relation between equivalent stress and equivalent strain foll
that of uniaxial relation in Eq.~1!, one has

s r2su

sY

5 f ~« r ! (6)

where the functionf (« r) is given in Eq.~1!. Using the boundary
conditions (s r ur 5r 0

50,s r ur 5r 1
5ss) and the incompressibility re-

quirement (r 32r 0
35R32R0

3), and substituting Eqs.~2! and ~6!
into Eq. ~4!, one finds
Fig. 1 Geometry of the spherically symmetric void in the initial and deformed
states
Transactions of the ASME
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sY

522E
R0

R1 R2

R21r 0
32R0

3
f H 2

2

3
lnS 11

r 0
32R0

3

R3 D J dR.

(7)

Equation~7! gives the relationship between the applied hyd
static stress and the cavity radius,ss(r 0). It should be pointed out
that the solution in Eq.~7! is identical to that obtained by Huan
et al. @15#.

2.2 Fluid Mechanics Method. The problem shown in Fig.
1 can also be solved using a fluid mechanics approach. Consi
potential flow generated by a point source of strengthQ at the
center of the sphere. The velocity components of the poten
flow in spherical coordinates (r ,u,w) are given by

u̇r5
Q

4pr 2
, u̇u5u̇w50. (8)

Integrating the radial velocity with respect to time with the initi
condition r u t505R gives

Qt5
4p

3
~r 32R3!. (9)

This equation shows thatr 32R3 is an invariant throughout the
solid body at any specific timet. This invariance requiremen
implies incompressibility of the material.

The strain rate components can be obtained from the velo
components by taking the derivative of the radial velocity w
respect to the radiusr, or by dividing the radial velocity byr, as

«̇ r52 «̇e522«̇u522«̇w52
Q

2pr 3
(10)

where«̇e is the equivalent strain rate defined as

«̇e5A2

3
«̇ i j «̇ i j (11)

where «̇ i j ( i , j 5r ,u,w) are the true strain rate components. B
integrating the strain rates with respect to time and using the
compressibility condition, one finds exactly the same express
as in Eq.~2!. This result shows that the potential flow generat
by a point source gives the same plastic deformation field aro
the void as that by the solid mechanics method given in Sec
2.1.

To obtain the stress-cavity growth relations, we use here
principle of virtual work rate instead of the equilibrium equatio
in solid mechanics. Such an approach is entirely based on
estimates of the velocity field and strain rate field, and makes
of the constitutive law in an integral sense. The principle of virtu
work rate in the current state is

E
S
ssu̇rdS5E

V
s i j «̇ i j dV (12)

whereS is the surface~including the outer surface and the inn
surface although the work done on the inner surface is zero s
it is traction-free! and V is the volume of the solid. Assuming
again that the material follows theJ2 flow rule and it is a von
Mises material, one has

si j 5
2

3

se

«̇e

«̇ i j (13)

wheresi j ( i , j 5r ,u,w) represent the deviatoric stress compone
defined as

si j 5s i j 2
1

3
skkd i j (14)
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Fig. 2 Stress versus void radius for the growth of a spheri-
cally symmetrical void; „a… effects of the initial radius of cavity,
„b… effects of the material constant sY ÕE, „c… effects of the
strain hardening exponent N
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whereskk5s rr 1suu1sww , andd i j is the Kronecker delta. As-
suming that the constitutive law between the equivalent true st
and true strain follows the uniaxial relation expressed in Eq.~1!,
and using the flow field given in Eqs.~8!, ~10!, and~11!, one can
rewrite Eq.~12! as

ss

sY

5
1

2pEV
f @2ln~r /R!#r 23dV. (15)

Changing the variables to those for the initial state by using
incompressibility condition, one finally obtains the same stre
separation relationship as that in Eq.~7!.

Using either Eq.~15! or Eq.~7!, curves of the hydrostatic stres
versus cavity radius are plotted in Figs. 2~a!–~c!. Figure 2~a!
shows the normalized hydrostatic stress versus the normal
current radius of the void for prescribed strain-hardening expon
and material constantssY /E. Curves for three different values o
initial void radius are plotted. The figure shows that the norm
ized stress reaches a maximum value rapidly, then decays m
tonically as the cavity grows. The solution also shows tha
smaller initial void size gives rise to a higher hydrostatic stress
a given amount of void growth and a higher maximum stre
When the loading process is stress-controlled, reaching the m
mum load results in instability of void growth~@3,16–18#!. When
the loading is displacement-controlled, a softening stage~load
drop! is experienced.

The effects of strain hardening exponent and yield strength
the stress versus void growth behavior are shown in Figs. 2~b!–
~c!. Figure 2~b! shows the normalized hydrostatic stress vers
normalized void radius for different values of the material co
stant sY /E for given initial radius of the cavity and strain
hardening exponent. Figure 2~c! shows the normalized stress ve
sus normalized void radius for different values of strain-harden
exponent for given initial radius of the void and material co
stants. The figures show that the stress versus cavity gro
curves are insensitive to the value of the normalized yield stren
sY /E, but rather sensitive to the strain-hardening exponent
the initial radius of the void. It is not unexpected to see stro

Fig. 3 Schematics of a cavitated ductile interface layer with
periodic cavity distribution
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dependence of the curves on hardening exponent and weak de
dence on initial yield strength since the deformation becomes v
large around the void as it grows. But the prediction of stro
dependence on the initial cavity size is interesting.

3 Fully Confined Two-Dimensional Void Growth in a
Thin Ductile Layer

In the previous section we showed that the method of usin
fluid mechanics solution to approximate the plastic flow field
indeed a viable one. For the one-dimensional problem consid
in the previous section, the solution turns out to be exact. But
more complicated cases, the solution can only be considered
proximate. In the present section, we consider a two-dimensio
problem.

A periodic array of cavities in a ductile layer fully confined b
the interfaces, shown schematically in Fig. 3, is considered. P
strain deformation is assumed. The cavities can be either c
pletely within the ductile layer generated at, e.g., second ph
particles, or at the interface generated from the interfacial po
Due to symmetry of the problem, the solution should be identi
for these two cases. The stress-separation curves,s~d!, due to
cavity growth and coalescence can be evaluated by consideri
representative unit cell containing a single cavity. It is expec
that, because of the confinement, plastic flow-induced ca
growth may start before the strength of the interface is reach
Due to the constraint by the rigid interface, high triaxial stres
will develop in the thin layer and will be the main driving forc
for cavity growth.

The geometry of the unit cell is presented in Fig. 4. The vo
spacing is 2w0 , the layer thickness is 2h0 , and the initial radius
of the void isR0 . A Cartesian coordinate system with origin at th
center of the cavity is established as in Fig. 4. Uniform tens
stress,ss , is applied normal to the thin layer. The periodici
condition requires that the width of the unit cell, 2w0 , remains
constant during deformation. The separation displacement,d, is
evaluated at the interface,x56h0 .

To obtain the approximate plastic deformation field in the u
cell, we now consider a potential flow generated by a source
strengthQ located atz50 in an infinite channel in the domain
2w0,y,w0 and 2`,x,`; here z5x1yi is the complex
variable. The complex potentialc of the flow field is found by
conformal mapping, as

c~z!5
Q

2p
lnH sinhS pz

2w0
D J . (16)

The velocity field corresponding to the potential flow is

u̇x2u̇yi 5
Q

4w0

cothS pz

2w0
D . (17)
Fig. 4 Unit cell model used in the two-dimensional void growth analysis
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The Cauchy strain rates corresponding to the velocity field
be obtained by differentiating Eq.~17!, as

«̇xx2 «̇xyi 52
pQ

8w0
2
csch2S pz

2w0
D

(18)

«̇xy2 «̇yyi 52 i
pQ

8w0
2

csch2S pz

2w0
D .

It is easily shown that the flow becomes uniform asx→6`
(u̇s2u̇yi 5Q/4w0 as x→6`), leading to vanishing strain rates
In fact, the flow becomes nearly uniform when the location un
consideration,x5h0 , is several times larger than the widthw0 .
Figure 5 shows the variation of the normal velocityu̇x at x5
6h0 across the width of the channel for different values of t
ratio h0 /w0 . In this figure,u̇x is normalized byu̇0 , which is the
normal velocity atx5h0 , y50. It is seen that when the ratio o
h0 /w0 is unity, the maximum difference inu̇x across the width is
about 15 percent. When the ratio is 2.0, the maximum differe
in u̇x is only two percent, andu̇x is approximately uniform acros
the width of the channel. In the following, we use the solution
the infinite channel to approximate the plastic flow field in t
finite sized unit cell in Fig. 4.

The equilibrium condition can be satisfied in a weak form
using the principle of virtual work rate, as

2E
2w0

w0

ssu̇x
I dy5E

V
si j «̇ i j dV22E

2w0

w0

DTi
I u̇i

Idy (19)

whereDTi
I is the difference in traction atx56h0 between the

average normal stressss and the stress corresponding to the pla
tic flow, u̇x

I and u̇i
I are the displacement rates atx56h0 given in

Eq. ~17!, andsi j , «̇ i j are the true deviatoric stress and true str
rate in the current configuration. Generally, when the ratioh0 /w0
is sufficiently large~say,>1!, the contribution of the last term in
Eq. ~19! is negligibly small. In our numerical results, the cont
bution from this term is ignored.

Assuming that the material obeys the plastic stress-strain r
tion given in Eq.~1!, and applyingJ2-flow theory, we can obtain
the relation of separation stress versus the displacement atx5
6h0 following the same steps as in Eq.~13! through Eq.~15!, as

ss

sY

5
1

QEV
f ~«e!«̇edV. (20)

The integration in Eq.~20! can be evaluated by a change of va
ables from Eulerian to Lagrangian coordinates, i.e., to the in

Fig. 5 Uniformity of the velocity field at the interface xÄh 0
Journal of Applied Mechanics
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~undeformed! coordinates. The corresponding relations betwe
the two sets of variables can be obtained by solving the differ
tial equations in Eq.~17!.

Results of the stress-separation curves are presented in
6~a!–~c!. In these calculations, void spacing is taken to be

Fig. 6 Stress-separation relations for two-dimensional void
growth; „a… effects of the initial radius of cavity, „b… effects of
the material constant sY ÕE, „c… effects of the strain-hardening
exponent N
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same as the initial thickness of the layer, i.e.,h0 /w051.0. Figure
6~a! shows the separation stress normalized by the yield st
versus the average logarithmic strain of the cell,«x5 ln(1
1d/h0), for different initial cavity size, a prescribed strain
hardening exponentN and normalized yield strengthsY /E. Fig-
ures 6~b! and ~c! depict the effects of the material yield streng
sY /E and the strain-hardening exponentN on the stress-
separation curves, respectively. The same trends as those in F
are obtained. Figure 6~a! shows that, for small initial void size
peak separation stress~i.e., cavitation instability under the load
controlled loading condition! is reached rapidly at a very sma
strain level with a high maximum separation stress. For exam
when R0 /w050.01, ssumax55.45sY . On the other hand, large
initial void sizes result in lower peak stresses reached at m
larger strains. The stress-separation curves decay monotoni
beyond its peak stress as the void expands, leaving a narrow
region between adjacent voids. Figures 6~b! and 6~c! again show
that the stress separation curves are insensitive tosY /E but rather
sensitive to hardening exponentN.

Figure 7 shows the comparison of the stress-separation cu
between the current result and that obtained by Tvergaard
Hutchinson@8# based on the Gurson model for elastoplastic m
terial. Here f 0 is the area fraction of voids in the initial, unde
formed state (f 05pR0

2/4w0h0), n is Possion’s ratio,d is the sepa-
ration displacement at the interface. All the parameters in
calculations are identical to those used by Tvergaard and Hu
inson @8# except for the Possion’s ratio since there is no ela
deformation in our model. The Possion’s ratio in Tvergaard a
Hutchinson’s calculation is 0.3 while in the current model it is 0
~rigid-plastic material!. The absence of elastic deformation
likely the reason why the current model predicts a lower pe
stress at a smaller displacement level and a somewhat lower s
ration stress than theirs, as shown in Fig. 7. Nevertheless, the
sets of curves in Fig. 7 exhibit general agreement. Due to
limitations of their finite element method, Tvergaard and Hutc
inson terminated their calculations at a much lower separa
displacement level than what we did using our model.

It is of interest to examine the shape evolution of cavities
they grow. Generally, an initially circular cavity becomes ellip
cal as it grows. Although the exact shape can be obtained
following the displacement of each material point on the bound
of the cavity, here we schematically depict the shape evolution

Fig. 7 Comparison of the stress-separation curves with Tver-
gaard and Hutchinson’s calculations
98 Õ Vol. 68, JANUARY 2001
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drawing an ellipse based on the long and short axes. Figu
shows an example of the evolution of the void shape under
prescribed parametersR0 /w050.3, N50.1, andsY /E50.003,
where the numbers 0,1, . . . ,4 represent different instants of tim
during cavity growth. The corresponding instants are shown
Fig. 6~a!. It is clear from Fig. 8 that, based on this model, t
cavity mainly grows in the layer-thickness direction. This featu
may be an artifact of the model since the mechanism of neckin
ligaments is not accounted for.

4 Fracture Resistance
For purely brittle fracture of crystalline materials, the fractu

toughness can be obtained by integrating the stress-separ
curve at the atomic level. For a ductile material undergoing fr
ture due to plasticity induced cavitation, the fracture toughn
can be evaluated by integrating an equivalent stress-separ
curve, such as those obtained in the previous section, at a m
larger length scale—the microscopic level. In this section
evaluate the fracture resistance of a sandwich structure exhib
plasticity-induced cavitation in the thin ductile layer. Only th
two-dimensional case will be considered in this section since
thickness of ductile layer and cavity spacing are ambiguously
fined for the spherically symmetric cases.

The separation curves obtained in the previous sections are
sitive to the initial cavity size and to the hardening exponent,
they are nearly independent of the ratio of the yield strength
Young’s modulus. Therefore, the effect of that ratio may be
glected. A universal expression of the stress-separation curve
be written as

ss~d!/sY5F~N,Vf ,G,d! (21)

whereN is the hardening exponent,d is the separation displace
ment,Vf denotes the density of the voids along the interface, a
G is a geometrical parameter related to the thickness of the du
layer and the spacing between cavities. In the two-dimensio
plane strain case, the initial density of cavitiesVf5R0 /w0 , and
the geometrical parameterG is the ratio of ductile layer thicknes
to the spacing between cavitiesh0 /w0 .

As pointed out by Tvergaard and Hutchinson@8,9#, in evaluat-
ing the amplification of the fracture resistance due to plastic
formation, the work of separation per unit area~the initial separa-
tion resistance!, G0 , and the ratio of peak separation stress
yield stress are two important parameters. The latter can be d
mined readily from the separation curves. The work of separa
for the unit cell is

Fig. 8 Evolution of void shape for the two-dimensional case
Transactions of the ASME
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W52E
0

U1*
Ts~d!dd (22)

whereU1* is the separation displacement level at which the to
separation occurs (ss>0), and Ts is the resultant force at the
boundary of the cell. The initial separation resistanceG0 can then
be expressed as

G05W/A52sYE
0

U1*
@ss~d!/sY#dd (23)

Fig. 9 „a… Normalized initial fracture resistance versus the
geometrical parameter G, „b… normalized initial fracture resis-
tance versus the void volume fraction Vf , „c… normalized initial
fracture resistance versus the strain-hardening exponent N
Journal of Applied Mechanics
tal

where the exposed surface areaA52w0t0 , andt0 is the thickness
in the out-of-plane direction. In order to use the separation cur
obtained in the previous section,G0 may be rewritten as

G0

2w0sY

5GE
0

«*
@ss~«!/sY#exp~«!d« (24)

where«* denotes the true strain at the boundary of the unit c
corresponding to the displacementU1* . The functional form of
ss(«)/sY can be obtained from the stress-separation curves in
previous section. Since the separation curves are nearly inde
dent of the material constantsY /E, the normalized initial fracture
resistance should then be nearly independent ofsY /E.

Equation~24! shows that the value of the normalized work
separation per unit area is determined by the integral on the ri
hand side only. The integration can be carried out for given val
of N, Vf , and G. The dependence of the normalized work
separation on the geometrical parameter,G, is shown in Fig. 9~a!.
For strain-hardening exponentN50.1 and the void densityVf
50.1, the normalized initial fracture resistanceG0/2w0sY has a
rather weak dependence onG(5h0 /w0). The value of the nor-
malizedG0 changes only from 0.95 to 1.17 whenG varies from
0.5 to 3.0. Furthermore, when the value ofG is larger than about
2.0, the normalized initial fracture resistance reaches
asymptotic value independent ofG.

The dependence of the normalized fracture resista
G0/2w0sY on the hardening exponent and on the initial void de
sity is shown in Figs. 9~b!–~c!. They demonstrate thatG0 is very
sensitive to the strain-hardening exponent,N, as shown in Fig.
9~c!, but moderately sensitive to the void density,Vf , as shown in
Fig. 9~b!. For given void densityVf , as N changes from the
nonhardening case (N50) to a strong hardening case (N50.3),
the value ofG0 increases nearly sixfold. However, for givenN, G0
decreases moderately asVf increases.

From Fig. 9~a!–~c! we can see that the value of the normaliz
G0 for the two-dimensional case is in the range of 0.5–1.75
N50 – 0.2. This is higher than the values~0.35–0.82! predicted
by Tvergaard and Hutchinson@8#. Tvergaard and Hutchinson
abruptly terminated their calculations when the void area fract
equals 0.2, and neglected the contribution of the stress-separ
curve beyond that point. This undoubtedly results in a lower w
of fracture than that predicted by our calculations.

5 Concluding Remarks
In the present paper, we have developed a new techniqu

solve solid mechanics problems involving large plastic deform
tion for which closed-form solutions are difficult or sometim
impossible to obtain. The technique involves using the fluid fl
field from existing fluid mechanics solutions to approximate t
plastic flow field, and using the principle of virtual work to satis
the equilibrium condition. It should be pointed out that the ma
difference between flow of fluids and plastic flow of solids is t
following: In the potential flow of fluids, there is no shear stres
whereas in plastic flow of solids, the shear stress~the Mises
equivalent stress in the present model! is constant for nonharden
ing materials or nearly constant for weakly hardening materials
general, the method we developed here may be applied to a
ety of solid mechanics problems, as long as the fluid mecha
solution is readily available.

This technique is used here to address a particular mecha
of interfacial fracture—cavitation in a thin ductile layer in a san
wich structure. Although this problem may be solved using n
merical methods, as has indeed been done by Tvergaard@14# us-
ing the finite element method, the method developed here has
clear advantage when carrying out a parametric study involv
extremely large deformation. Solving the two-dimensional cav
growth problem using the present method is much less tim
consuming compared to, e.g., that using the finite element me
with remeshing.
JANUARY 2001, Vol. 68 Õ 99
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Two configurations have been considered in this paper
spherically symmetric case for which a closed-form solid mech
ics solution exists; and a two-dimensional, plane strain prob
for which no closed form solution exists. In both cases, the po
tial fluid flow field from a point source is used to approximate t
plastic deformation field surrounding the growing cavity in a re
resentative unit cell. The current method gives the exact solu
for the spherically symmetric cavity growth problem. For the tw
dimensional plane strain cavity growth problem, reliable stre
separation relations have been obtained. The results show tha
initial size of the void and the strain-hardening exponent are
important parameters that strongly affect the stress-separa
curves. The stress-separation relations are also dependent on
geometrical parameters as the layer thickness and the void s
ing. The interfacial fracture resistance due to this mechani
evaluated by integrating the stress-separation curves, is stro
dependent on the strain-hardening exponent, is moderately de
dent on cavity density, and is nearly independent on the geom
cal parameterG.

In the present paper, void coalescence due to the neckin
ligaments is not addressed. The interaction between adja
voids is modeled by simply specifying the Neumann bound
conditions for each representative unit cell, i.e., the normal
placement at the boundaries of the unit cell between adja
voids vanishes. Therefore the model is not accurate when nec
instability and coalescence take place between adjacent v
Furthermore, necking would result in accelerated separation o
fracture planes, leading to a rapid load drop in the stre
separation curves. Hence the final stage of the stress-separ
curves predicted by the present model may not be very accu
Fortunately, this stage of the separation process has only insig
cant contributions to the overall fracture resistance.

There are several implications of the results by the pres
model. As shown in Fig. 9, as the void density increases, i.e.
the spacing between voids decreases, the fracture resistanc
creases monotonically. This result implies that, in an adhesiv
bonded structure, a finer interfacial microstructure with mo
densely distributed void nucleation sites will give rise to a low
interfacial fracture toughness. However, a finer microstruct
also means a smaller initial cavity size; thus it requires a hig
peak stress to reach instability during void growth. Therefo
there could exist a preferred combination of pore size and p
spacing of the interfacial microstructure that will result in an o
timal performance of the sandwich structure. Identification
such optimal combination will provide guiding principles for pr
paring the surfaces of structural components~e.g., aluminum pan-
els! for adhesive bonding.
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Theory of Boundary
Eigensolutions in Engineering
Mechanics
A theory of boundary eigensolutions is presented for boundary value problems in
neering mechanics. While the theory is quite general, the presentation here is restric
potential problems. Contrary to the traditional approach, the eigenproblem is forme
inserting the eigenparameter, along with a positive weight function, into the boun
condition. The resulting spectra are real and the eigenfunctions are mutually orthog
on the boundary, thus providing a basis for solutions. The weight function permits e
tive treatment of nonsmooth problems associated with cracks, notches and mixed b
ary conditions. Several ideas related to the convergence characteristics are also
duced. Furthermore, the connection is made to integral equation methods and varia
methods. This paves the way toward the development of new computational formul
for finite element and boundary element methods. Two numerical examples are inc
to illustrate the applicability.@DOI: 10.1115/1.1331059#
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1 Introduction
Orthogonal functions in the form of trigonometric series a

their generalizations have been used to solve boundary v
problems since at least the 19th century with a rigorous m
ematical foundation provided by Fourier, Dirichlet, and others.
this classical approach the basis functions are orthogonal ove
problem domain. Detailed accounts of related concepts can
found in the works of Carslaw@1#, Courant and Hilbert@2#, Morse
and Feshbach@3#, Tolstov @4#, and Lanczos@5#.

However, it is clear from integral equation representations t
the bounding surface is actually paramount in the solution of
ear boundary value problems. Consequently, it is perhaps m
appropriate to employ basis functions that are orthogonal over
boundary. We will see that these functions can be generate
solving an eigenproblem in which the eigenparameter appea
the boundary condition. The new concepts that emerge from
approach seem to have significance for the general theor
boundary value problems as well as for computational mechan

The approach is particularly well suited for nonsmooth pro
lems, providing a unified treatment of such problems. A bound
value problem is considered nonsmooth if the boundary of
domain is nonsmooth or mixed boundary conditions are specifi
In these cases, the solution is nonanalytic at some points on
boundary. Thus, the characteristic feature of these nonsm
boundary value problems is the presence of singularities in
flux or higher order derivatives on the boundary. Since most of
mathematical problems posed in engineering mechanics inv
either nonsmooth geometries or mixed boundary conditions,
attempt to provide a unified treatment that encompasses t
nonsmooth problems.

Although the theory is applicable to a wide range of problem
we explore this idea within the context of potential theory. Th
we are interested in the solution of the Laplace equation¹2u
50 in domainV, subject to boundary conditions onS. The do-
main V can be two or three-dimensional, simply or multiply co
nected. The boundaryS is a contour or set of contours in two

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
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paper should be addressed to the Editor, Professor Lewis T. Wheeler, Departm
Mechanical Engineering, University of Houston, Houston, TX 77204-4792, and
be accepted until four months after final publication of the paper itself in the AS
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dimensional problems and a closed surface or surfaces for th
dimensional domains. Letq represent the normal boundary flux
whereq5]u/]n with n as the outward unit normal toS. Then
either Dirichlet~u5ū on S!, Neumann~q5q̄ on S!, or mixed~u
5ū on Su and q5q̄ on Sq with SuøSq5S and SuùSq5B!
boundary conditions may be specified. As we know from t
theory of boundary value problems,u is analytic in domainV.
Although in our work,u is assumed to be continuous, it need n
be analytic on boundaryS. Furthermore, at nonsmooth points,q is
not defined. In general,q is a piecewise continuous function o
the boundary.

With this background in mind, we begin by defining the boun
ary eigenproblem in the following section. Further details on c
tain aspects can be found in Hadjesfandiari@6#, which also in-
cludes the extension to the theory of elasticity.

2 Boundary Eigenproblem for Potential Theory
Consider theboundary eigenproblemfor potential theory de-

fined as follows: Find the nonzero functionu such that in the
domainV

¹2u50 (2.1a)

and on the boundaryS

q5lfu (2.1b)

where the parameterl is an eigenvalue. Additionally, theweight
functionf is integrable onS, but does not change sign. For sim
plicity, we takef to be always positive onS. Note that this per-
mits f to be discontinuous or even singular at some points~i.e.,
piecewise continuous!. However, from thefundamental boundary
condition~2.1b!, we note that nowq is always continuous on the
boundary wheneverf is continuous, even if there are geomet
cally nonsmooth points~e.g., edges, corners!.

With the classical approach, the eigenparameter is introdu
into the governing differential equation and a specific set of
mogeneous boundary conditions are prescribed. However, in
boundary eigenproblem~2.1!, the differential operator remains in
tact, while the eigenvalue is inserted into the boundary condit
This subtle difference has significant consequences. For exam
the eigenfunctions associated with~2.1! are indeed harmonic inV,
unlike the classical eigenfunctions which are actually solutions
a corresponding Helmholtz problem. Furthermore, the infinite
quence of eigenfunctions for~2.1! can be used as a basis for a
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solutions to boundary value problems in domainV governed by
the Laplace equation with arbitrary well-defined boundary con
tions onS.

Hilbert @7# considered the eigenproblem~2.1! with f51. Cou-
rant and Hilbert@2#, in a supplement to their work on vibratio
and eigenvalue problems, asserted that the properties of the e
solutions are similar to those of other eigenproblems such
Sturm-Liouville. It seems, however, that the significance of
boundary eigenproblem in engineering mechanics has not b
recognized.

The theory of pseudodifferential operators~e.g.,@8,9#! is broad
enough to encompass~2.1! as a special case. This provides t
mathematical foundation and permits the introduction of a th
rem defining the behavior of solutions.
THEOREM. The boundary eigenproblem defined by (2.1) has
following properties:

~i! At least one eigensolution (l,u) exists.
~ii ! All of the eigenvaluesl are real.
~iii ! The infinite sequence of eigenfunctionsun for n

51,2, . . . areboundary orthonormal with respect tof,
that is

E
S
f~x!um~x!un~x!dS~x!5dmn (2.2)

wheredmn is the Kronecker delta.
~iv! All nonzero eigenvalues are positive.
~v! The infinite collection of eigenvalues form an increasi

sequence,l1<l2< . . . <ln< . . . such thatln become
infinite for n→`.

~vi! The system of eigenfunctions is complete.

Proof. It is easy to see that the equipotential solutionu
5constant is an eigenfunction corresponding tol50. By inte-
grating both sides of the boundary condition~2.1b! over the
surface and using Green’s first theorem, we have for e
eigensolution

E
S
qdS50 (2.3a)

and forlÞ0

E
S
fudS50. (2.3b)

If l is a complex number, sayl5a1 ib, u can be complex, say
u5v1 iw. It is easily seen that the complex conjugate of t
eigensolution, (l̄,ū) is also an eigensolution, wherel̄5a2 ib
and ū5v2 iw. By using the reciprocal theorem~Green’s second
identity! for u and ū, we obtain

E
S
~uq̄2ūq!dS50.

Substituting the fundamental boundary condition~2.1b! along
with its complex conjugate produces

~ l̄2l!E
S
fūudS50.

However,f is positive onS, u is not zero everywhere, and there
fore the surface integral is a positive number. We conclude
l̄2l50 and thereforel is real, as asserted in item~ii !. If the
eigenfunctionu is complex, then its real and imaginary parts a
both eigensolutions. Thus, we may choose to take only real ei
functions.

Let (l1 ,u1) and (l2 ,u2) be two different eigensolutions with
l1Þl2 . By applying the reciprocal theorem foru1 andu2

E
S
~u1q22u2q1!dS50.
102 Õ Vol. 68, JANUARY 2001
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Using the fundamental boundary conditions

~l22l1!E
S

f

u1u2dS50.

However, sincel1 andl2 are different eigenvalues, we have

E
S

f

u1u2dS50

and item~iii ! is proved for distinct eigenvalues. Gram-Schmi
orthogonalization can be used for eigenfunctions associated
nondistinct eigenvalues. Additionally,~2.3b! is now seen as a spe
cial case of orthogonality with respect to the constant eigenfu
tion corresponding tol50.

Next we find an expression for the eigenvaluel. Multiplying
both sides of~2.1b! by u and integrating over the boundary, w
obtain

l5

E
S
qudS

E
S
fu2dS

. (2.4)

If we substituteq5u,ini , then the numerator can be written

E
S
qudS5E

S
u,iunidS.

Using the divergence theorem

E
S
qudS5E

V
~uu,i ! ,idV (2.5)

or

E
S
qudS5E

V
~u,iu,i1uu, i i !dV.

However, sinceu,i i 5¹2u50, we have

E
S
qudS5E

V
u,iu,idV

and forl in terms of the eigenfunctionu, we obtain

l5

E
V
u,iu,idV

E
S
fu2dS

. (2.6)

For any nonzero eigenvalue, the numerator and denominato
~2.6! are both positive. Therefore, the eigenvalue is positive
specified in item~iv!. The properties listed as items~v! and ~vi!
can be inferred via analogy with related eigenproblems, such
the Sturm-Liouville problem. However, rigorous proof is st
needed. Additional mathematical concepts, such as those prov
by Hilbert-Schmidt theory, may be appropriate.

Based upon the characteristics of the boundary eigenprob
we can express the potentialu as an infinite series of boundar
eigensolutionsun

u5(
n51

`

Anun in VøS. (2.7)

Multiplying both sides withfum whereum is also an eigensolu-
tion and integrating on the boundary, we obtain

E
S
fuumdS5(

n51

` E
S
AnfunumdS.
Transactions of the ASME
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Due to orthogonality all of the terms are zero, except the o
corresponding toAm . Then

E
S
fuumdS5AmE

S
fum

2 dS

and the coefficientAm can be written

Am5

E
S
fuumdS

E
S
fum

2 dS

. (2.8)

The Am represent generalized Fourier coefficients and are h
called the fundamental coefficients. If the eigenfunctions are
thonormal, then obviously

Am5E
S
fuumdS. (2.9)

As mentioned previously, the potentialu is assumed continu
ous. Consequently, the fundamental expansion converges
formly to u in the domainV and boundaryS. In the potential
problem,u is analytic in the domainV. Thus, the first~and higher
order! derivatives ofu converge uniformly in the domainV. On
the other hand,u is not necessarily analytic on the boundaryS.

However, the completeness of the set of boundary eigenfu
tions enables the representation of any mean square integ
function w defined onS ~i.e., *Sfw2dS,`! as an infinite series
(cnun wherecn5*SfwundS. The series converges in the mea
to w on S. The value of the series isw, whereverw is continuous.
Otherwise, the series converges to the principal mean value~@6#!.

Therefore, the infinite series in~2.7! converges in the mean tou
on S. Now what can be said concerning the fundamental exp
sion of q? We write

q5
]u

]xi
ni5(

n51

`

An

]un

]xi
ni . (2.10)

However,

qn5
]un

]xi
ni5lnfun .

Then

q5f(
n51

`

Anlnun on S. (2.11)

Next we can define theweighted flux qf, where

q5fqf. (2.12)

Therefore,

qf5(
n51

`

Anlnun on S. (2.13)

If the functionqf is piecewise continuous on the boundaryS, then
the fundamental expansion~2.13! converges in the mean. Beside
~2.13! converges uniformly toqf in every closed set onS con-
taining no discontinuity. Conversely, theNth partial sum of the
fundamental expansion ofqf

qN
f5(

n51

N

Anlnun on S (2.14)

cannot approach the functionqf(x) uniformly over any set con-
taining a point or line of discontinuity ofqf. If qf is piecewise
regular, then this is a generalized form of Gibbs’ phenomen
Further ideas concerning convergence behavior are discuss
Hadjesfandiari@6#.
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In the theory above, we consideredf to be positive everywhere
on S. We should emphasize this property is a necessary cond
for having a complete set of eigenmodes for representing all gi
potential problems. If insteadf is only non-negative on some
parts of the boundary, then the eigenmodes follow all of the p
viously mentioned properties, but are complete for represen
only those problems for whichq50 on segments correspondin
to zero values off.

3 Integral Equation Method
As is well known, every boundary value problem can be tra

formed into an integral equation. For the direct integral equat
method

c~j!u~j!1E
S
F~x,j!u~x!dS~x!5E

S
G~x,j!q~x!dS~x!

(3.1)

where kernelG(x,j) is the potential at pointj generated by a unit
source at boundary pointx. Thus,

G~x,j!5H 1

2p
ln

1

r
in two dimensions

1

4pr
in three dimensions

wherer is the distance between pointsx andj. Meanwhile

F~x,j!5
]G~x,j!

]n~x!
.

For boundary pointj, the integral on the left-hand side of~3.1! is
considered as a Cauchy principal value. Ifj is on a smooth bound-
ary, thenc(j)51/2. In the more general case, including geome
cally nonsmooth points

c~j!52E
S
F~x,j!dS~x!.

By substituting the fundamental boundary condition~2.1b! into
~3.1!, we obtain the boundary eigenproblem in integral form

c~j!u~j!1E
S
F~x,j!u~x!dS~x!5lE

S
G~x,j!f~x!u~x!dS~x!.

(3.2)

This is an integral representation of~2.1!. The solution of~3.2!
has all of the characteristics defined in Section 2. The eigens
tions of ~3.2! are real, with non-negative eigenvalues and bou
ary orthogonal eigenfunctions. Consequently, the spectrum of
direct integral equation representation of the potential problem
real for every positive, integrable boundary weight functionf,
and the eigenfunctions form an orthogonal set. It seems th
spectrum analysis of the direct integral equation has not appe
before in the literature.

We should not forget that the direct integral equation~3.1! is
derived from the reciprocal theorem between the singular fun
mental solution and the potentialu. Recall that the reciproca
theorem also played a key role in the theory of boundary eig
solutions.

Furthermore, we can introduce theweighted flux qf, where
q(x)5f(x)qf(x). Then,~3.1! can be rewritten

c~j!u~j!1E
S
F~x,j!u~x!dS~x!5E

S
G~x,j!f~x!qf~x!dS~x!.

(3.3)

In nonsmooth problems involving flux singularities, the weig
function f(x) can be chosen to capture the asymptotic behav
JANUARY 2001, Vol. 68 Õ 103
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of the flux near the singular point. The integral equation~3.3! then
involves only bounded solution variablesu(x) and qf(x). In
other words,qf is a piecewise regular function.

In a practical sense for engineering applications, we may w
to solve discretized versions of~3.2! and~3.3! by using the bound-
ary element method~e.g., @10#!. Numerical solution of~3.2! al-
lows us to study the character of the discretized integral equa
representation of the potential problem, while the computatio
algorithms associated with~3.3! permit the direct solution of non
smooth boundary value problems. Numerical examples of this
ter approach are included in Section 7. Further details concer
the boundary element formulations and implementations are
vided in Hadjesfandiari and Dargush@11#.

4 Variational Method
Consider the functionall@u# defined as follows:

l@u#5

E
V
u,iu,idV

E
S
fu2dS

. (4.1)

This is the Rayleigh quotient associated with the eigenprob
~2.1!. We can see from~2.6! that for any boundary eigensolution
say (ln ,un), the functionall@un#5ln . Furthermore, it is easy to
show that the Rayleigh quotient is extremum for boundary eig
functions. Taking the first variation ofl@u# from ~4.1!, we obtain

dl5

2E
V

]u

]xi
d

]u

]xi
dVE

S
fu2dS22E

V

]u

]xi

]u

]xi
dVE

S
fududS

E
S
fu2dS2

.

Substituting~4.1! again produces

dl52

E
V

]u

]xi
d

]u

]xi
dV2lE

S
fududS

E
S
fu2dS

or

dl52

E
V

]

]xi
S ]u

]xi
duDdV2E

V
¹2ududV2lE

S
fududS

E
S
fu2dS

.

Then using the divergence theorem

dl52

E
S

]u

]n
dudS2E

V
¹2ududV2lE

S
fududS

E
S
fu2dS

or

dl52

E
S
~q2lfu!dudS2E

V
¹2ududV

E
S
fu2dS

.

Now du is an arbitrary variation in the domain and on the boun
ary. For an extremum ofl@u#

dl50, (4.2)

and we must have

¹2u50 in V
104 Õ Vol. 68, JANUARY 2001
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q5lfu on S.

Therefore, every eigenfunction of the boundary eigenprobl
~2.1! extremizes the Rayleigh quotient~4.1!, and the value of this
quotient equals the eigenvalue corresponding to the spec
eigenfunction.

Variational methods can, of course, be used to formulate fi
element methods~e.g., Bathe@12#!. In Hadjesfandiari and Dar-
gush@11# a discretized version of~4.1! is used to develop a finite
element formulation for the boundary eigenproblem. Furthermo
the above variational framework leads to the development o
flux-oriented finite element method that has some distinct adv
tages over existing approaches for the solution of general sm
and nonsmooth boundary value problems. Details of this fin
element formulation and the associated numerical implementa
are also presented in Hadjesfandiari and Dargush@11#.

5 Boundary Eigensolutions as Basis for Boundary
Value Problems

As noted previously, the boundary eigensolutions can be u
as a basis for solutions to general boundary value proble
~BVPs! in potential theory. The three primary boundary val
problem types~Dirichlet, Neumann, and mixed! are considered
below. In all cases, the potentialu and normal fluxq are defined
by the series~2.7! and ~2.11!, respectively.

Dirichlet Problem. Assume the value ofu is prescribed ev-
erywhere on the boundary such thatu5 f (x) on S, wheref (x) is
an integrable continuous function. Using~2.9!, we obtain the fun-
damental coefficients as

Am5E
S
f f umdS (5.1)

assuming orthonormalized eigensolutions.

Neumann Problem. Assume the value ofq is prescribed ev-
erywhere on the boundary such thatq5g(x) on S, whereg(x) is
a piecewise continuous function satisfying the Gauss conditio

E
S
g~x!dS50. (5.2)

Multiplying both sides of~2.11! with um and integrating over the
boundary, we obtain

E
S
gumdS5(

n51

`

lnE
S
AnfunumdS.

All of the terms on the right-hand side except the one involvi
Am are zero. Therefore

E
S
gumdS5lmAmE

S
fum

2 dS

and the fundamental coefficients become

Am5
1

lm
E

S
gumdS for mÞ1 (5.3)

assuming orthonormalized eigensolutions. The coefficientA1 ,
corresponding tol150, is undetermined due to the character
the Neumann potential problem.

Mixed Problem. In this case, the value ofq is specified on
some portion of the boundary and the value ofu is specified on
the rest of the boundary. In Section 2, we classified this prob
as nonsmooth, along with general problems involving corne
notches, and cracks. The common feature of all of these probl
is singularity of the solution. Most practical engineering proble
are of this type. We may still use the relationships inherent
Transactions of the ASME
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~5.1! and ~5.3!, but we cannot obtain an uncoupled closed-fo
solution for the fundamental coefficients. This case is related
methods such as dual series equations for bounded domains
dual integral equations for unbounded domains~@13#!, the Hilbert
problem ~@14#!, and the Wiener-Hopf technique~@15#!. We can,
however, obtain a numerical solution of mixed problems. This
addressed more fully in Hadjesfandiari and Dargush@11# where
new boundary element and finite element formulations
introduced.

6 Some Boundary Eigensolutions in Closed Form
In order to obtain a better understanding of the nature of

boundary eigensolutions, some problems are now solved in clo
form. These solutions will be needed subsequently for comp
tive purposes when studying the performance of boundary
ment and finite element methods. Solutions of the boundary eig
problem withf51 are developed for the circle in the followin
subsection. Afterward, boundary eigensolutions, involving sin
lar weight functions, are presented for an infinite wedge and fo
circle with a notch. Additional closed-form boundary eigenso
tions for an annulus and a sphere are provided in Hadjesfan
@6# along with an application to conformal mapping.

Circle. We first consider a circle with radiusa. By using the
separation of variables method, the potential may be written
polar coordinates as

u5A01(
n51

`

@An cos~nu!1Bn sin~nu!#r n. (6.1)

Every term satisfies our boundary eigenproblem, as demonstr
below. On the circle]u/]n5]u/]r . Therefore,

]u

]r
5(

n51

`

n@An cos~nu!1Bn sin~nu!#r n21.

It is obvious thatA0 is the eigenfunction corresponding tol50.
For each additional term, we checkq5lu on the boundary of the
circle r 5a. For each value ofn

n@An cos~nu!1Bn sin~nu!#an21

5l@An cos~nu!1Bn sin~nu!#an

and the boundary eigenvalues are easily established as

ln5
n

a
where n51,2, . . . . (6.2)

We see that for every eigenvalue,ln , there are two different
eigenfunctions

un
~1!5r n cos~nu!, (6.3a)

un
~2!5r n sin~nu!. (6.3b)

The circle is a special case in which all of the nonzero eigenva
have multiplicity two. The orthogonality and completeness of t
set of eigenfunctions is well established. We are most intereste
the property of boundary orthogonality, which in this case is a
satisfied.

All of the eigenfunctions, exceptu0 , oscillate along the circum-
ference and decay to zero at the center. Asn increases, theun
oscillate and decay more rapidly. Thus, for largen, the response is
essentially confined to the near surface region. Notice also th
the weight function is instead selected asf51/a, then the bound-
ary eigenvalues are simply the integers.

Infinite Wedge. In the first example, closed-form solution
were obtained for the boundary eigenproblem with constantf.
Here we examine the problem of an infinite wedge occupying
Journal of Applied Mechanics
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domain 0,u,a and introduce a variable weight functionf.0
to provide a means for obtaining closed-form expressions for
eigensolutions.

Consider the analytic functionf (z) given by the following:

f ~z!5eikzp/a

where k is an arbitrary real number. Alternatively, this can b
written in terms of polar coordinates as

f ~z!5e2krp/a sin~pu/a!@cos~krp/a cos~pu/a!!

1 i sin~krp/a cos~pu/a!!#. (6.4)

Both the real and imaginary parts off (z) satisfy the boundary
eigenproblem with weight function

f5
p

a
r ~p/a!21. (6.5)

We demonstrate this for the real part which is renamedu, where

u5e2krp/a sin~pu/a! cos~krp/a cos~pu/a!!

with corresponding flux

qu5
1

r

]u

]u
52

p

a
r ~p/a!21e2krp/a sin~pu/a! cos~krp/a cos~pu/a!!.

By noticing that

q5H 2qu at u50

1qu at u5a

we see that the fundamental boundary conditionq5lfu is satis-
fied on the boundary, if the weight function is given by~6.5! and
the eigenvalues arel5k. A similar proof can be obtained for the
imaginary part.

For the infinite wedge, the spectrum is continuous and the
tential can be represented in terms of boundary eigenfunction

u5E
0

`

ukdk (6.6)

with

uk5e2krp/a sin~pu/a!@A~k!cos~krp/a cos~pu/a!!

1B~k!sin~krp/a cos~pu/a!!#. (6.7)

Once again with increasingk, these eigenfunctions decay mo
rapidly toward the interior of the domain.

It is interesting to note that fora5p, the weight functionf
51 and the potential becomes analytic inVøS. The solution for
u then reduces to that for a semi-infinite domain. On the ot
hand, fora.p, the weight functionf and the boundary fluxq
are singular, in agreement with the singularity present at notc
and cracks. However, the weighted boundary fluxqf, whereq
5fqf, remains bounded and continuous.

Circle With Notch „Finite Wedge…. For the previous two
examples, boundary eigensolutions were derived with a posi
weight function everywhere on the boundary. Here we examin
finite wedge occupying the domain 0,u,a andr ,a. We intro-
ducef51/a on the circular arc andf50 on the two sides cor-
responding tou50 and u5a, as shown in Fig. 1. Thus, the
eigenfunctions must be compatible withq50 on the sides.

Clearly the constant eigenfunctionu051 with eigenvaluel0
50 satisfies the boundary eigenproblem. Now consider the
monic functions

un5Re$znp/a%5r np/a cosS np

a
u D for n51,2, . . .

(6.8)

with gradient
JANUARY 2001, Vol. 68 Õ 105
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qun5
1

r

]un

]u
52

np

a
r ~np/a21! sinS np

a
u D

qrn5
]un

]r
5

np

a
r ~np/a21! cosS np

a
u D .

Notice thatq52qun50 on u50 and thatq5qun50 on u5a.
On the circular arcr 5a, we have

q5qrn5
np

a
a~np/a21! cosS np

a
u D .

Consequently, theun defined in ~6.8! are boundary eigenfunc
tions, with the corresponding eigenvalues given as

ln5
np

a
for n51,2, . . . . (6.9)

We should emphasize that fora.p, the gradients are singular a
the tip of the notch for the first moden51. Furthermore, in this
special example, the eigensolutions are exactly those that we
derive from a local analysis about the notch tip.

7 Application of Theory to Nonsmooth Boundary
Value Problems

In this section, we consider the application of the theory
boundary eigensolutions to two nonsmooth potential proble
The first example utilizes the boundary eigensolutions just
tained to solve a boundary value problem for the circle with
notch. The solution is obtained as an infinite series of bound
eigensolutions. Results are also obtained numerically usin
boundary element formulation based on the integral equa
method of Section 3. A second example is then provided, invo
ing potential flow in a square region with a diamond-shaped c
out for which an analytical solution is not possible.

Circle With Notch. Consider the Neumann problem illus
trated in Fig. 2 with the following boundary conditions:

q5H 1q0 for a1,u,a2

2q0 for a2a2,u,a2a1

0 elsewhere

.

Fig. 1 Circle with notch—boundary eigenproblem definition

Fig. 2 Circle with notch—boundary value problem definition
106 Õ Vol. 68, JANUARY 2001
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Notice that the Gauss condition for equilibrium of flux~5.2! is
satisfied.

Based on the theory of fundamental boundary eigenexpans

u5(
n50

`

Anun (7.1)

whereun are given by~6.8!. From Section 5, the coefficients ar
established as

An5

E
S
qundS

lnE
S
fun

2dS

for n51,2, . . . . (7.2)

Due to the character of the Neumann problem, the coefficientA0
is undetermined. After carrying out the integrations in~7.2!, we
have

An5
4q0a

n2p2anp/a21 FsinS npa2

a D2sinS npa1

a D G
for n51,3,5, . . . (7.3)

while An50 for n52,4, . . . due to theantisymmetric boundary
conditions. Thus,

u5A01A1r p/a cosS pu

a D1 (
n53,5

`

Anr np/a cosS npu

a D (7.4)

qu52
p

a
A1r p/a21 sinS pu

a D2 (
n53,5

`
np

a
Anr np/a21 sinS npu

a D .

(7.5)

We are most interested inA1 corresponding tol15p/a. In light
of the tearing stress intensity factor~Mode III! in fracture mechan-
ics, we can define a generalized flux intensity factor via the f
lowing:

K III 5 lim
r→0

A2pr 12p/aqu~r ,u5a/2!.

Then, for the present problem

K III 5A2p
p

a
A154A2

p
q0a12p/aFsinS pa2

a D2sinS pa1

a D G .
Now we use a boundary element method, based upon~3.3!, to

determine the generalized flux intensity factor at the notch
numerically. Additional details can be found in Hadjesfandiari@6#
and Hadjesfandiari and Dargush@11#. We model only half of the
body and imposeu50 on the symmetry cut. Furthermore, from
the closed-form eigenfunction, we also choosef5r p/a21 along
that symmetry boundary. We consider two specific cases inv
ing a crack and a reentrant corner. Geometric and loading de
are provided in Table 1. For each case, the model employs
quadratic boundary elements on the surface with a very fine m
near the singular point.

Results obtained for the weighted fluxqf along the symmetry
cut are shown in Fig. 3 fora52p ~i.e., a crack!. The oscillations
in qf near the tip are the result of nonuniform convergence, a
thus represent a generalized form of Gibbs’ phenomenon. Th

Table 1 Circle with notch

Case
a

~deg!
a1

~deg!
a2

~deg! qBE
f (0) K III uBE

K III
Exact

Crack 360 67.5 112.5 0.351 0.880 0.88
Reentrant corner 270 22.5 67.5 0.571 1.43 1.4
Transactions of the ASME
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discussed further in the next example. Here we use an extrap
tion procedure to estimate the value of the generalized flux in
sity factors, where

K III uBE5 lim
r→0

A2pqf~r !.

A comparison of the boundary element results with the analyt
solution is presented in Table 1 for both the crack and reent
corner. The errors in the numerical solutions are approxima
0.1 percent.

It may seem that in order to solve any nonsmooth problem,
must have the boundary eigensolutions. Fortunately, we only n
the asymptotic behavior near the singular point, which can
found from a local analysis. The next example shows this clea

Square With Diamond-Shaped Cutout. We examine the
problem of potential flow in a square region with a diamon
shaped cutout illustrated in Fig. 4. Leth510, a51 andb52. All

Fig. 3 Circle with notch—weighted flux versus distance from
crack tip

Fig. 4 Square with a diamond-shaped cutout—problem
definition
Journal of Applied Mechanics
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of the boundary conditions are specified in the diagram. Due
the nature of the cutout, singularities in flux occur at pointsA–D.
Here we focus on the singularities at pointsA andC. We invoke
symmetry conditions aboutx50 and introduce the following
positive weight function on that boundary:

f5H fA5r A
g21 for y.a

fC5r C
g21 for y,2a

Fig. 5 Square with a diamond-shaped cutout—convergence of
weighted flux versus distance from singular point
JANUARY 2001, Vol. 68 Õ 107
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with r A5y2a and r C52y2a as shown in the figure. From a
analysis of local asymptotic behavior based upon the result
Section 6,g5p/(2p2b), whereb is the internal cutout angle
Then, as in~2.12!, let q5fqf. Althoughq is singular atA andC,
qf remains bounded, and the eigenproblem defined by~3.2! has a
real spectrum and a set of boundary orthogonal eigenfuncti
These eigensolutions cannot be found in closed form; howe
we only need their asymptotic behavior near the notch tips
order to solve the boundary value problem numerically.

Here the problem is again solved by employing a bound
element method based upon the integral equation~3.3!. Due to
symmetry, only the left half of the problem domain is model
andu50 is enforced on the symmetry boundaryx50. Two levels
of mesh refinement are considered by using 51 and 81 quad
boundary elements along the surface. The mesh is graded t
clude a finer discretization near the singular points.

Results obtained forqf with b5p/2 are displayed in Figs
5~a,b!. The solutions away from the singular points have co
verged even with a relatively coarse mesh. Oscillations inqf ap-
pear near the pointsA andC. Once again these oscillations are
generalized form of Gibbs’ phenomenon due to nonuniform c
vergence. Notice that the amplitude of the oscillation is insensi
to the level of mesh refinement. This is the analog of the class
Gibbs’ phenomenon in which the oscillation amplitude is indep
dent of the number of terms included in a series representatio
a function with a jump discontinuity. Here it is the infinite seri
of boundary eigenfunctions that has been truncated.

In practice, filtering techniques or extrapolation algorithms c

Fig. 6 Square with a diamond-shaped cutout—generalized
flux intensity factor versus internal cutout angle
108 Õ Vol. 68, JANUARY 2001
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be used to extract the generalized flux intensity factors. The la
approach is adopted to provide the results presented in Fig. 6
the coarse boundary element mesh. The quantitiesqA

f(0) and
qC

f(0) are related to generalized flux intensity factors that quan
the singularity at pointsA andC, respectively. Figure 6 illustrate
the variation ofqA

f(0) with internal cutout angle. In all cases, th
flux q is infinite. However, by introducing the singular functionf,
smooth variations ofqA

f(0) andqC
f(0) with b are obtained. The

limiting case,b50 represents a crack. Boundary element resu
obtained for this limiting case using quarter-point elements~e.g.,
@10#! are also shown in Fig. 6, and indicate very good correlat
with the present approach.

8 Concluding Remarks
In this paper, we have explored the concept of boundary eig

solutions to boundary value problems. The resulting theory f
nishes new insight into the solutions of BVPs. In addition, we fi
that there is a connection among the theory of boundary eige
lutions, integral equation methods and variational methods. In
domain of computational mechanics, this provides a relations
between boundary element methods and finite element metho

Hilbert @7# has mentioned the boundary eigensolutions withf
51 long ago, and has even given their relation with the calcu
of variations. He did not notice the relation with the direct integ
equation. This theory has been further developed here by in
ducing a general positive weight functionf, which then provides
a unified treatment for nonsmooth problems in engineering m
chanics and allows for meaningful solutions to be obtained. T
simple numerical examples considered in Section 7, based
boundary element formulation, illustrate the attractiveness of
new methodology.
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A State-Space-Based Stress
Analysis of a Multilayered
Spherical Shell With Spherical
Isotropy
This paper presents an exact static stress analysis of a multilayered elastic spherica
(hollow sphere) completely based on three-dimensional elasticity for spherical isot
Two independent state equations are derived after introducing three displacement
tions and two stress functions. In particular, a variable substitution technique is use
derive the state equations with constant coefficients. Matrix theory is then employ
obtain the relationships between the state variables at the upper and lower surfac
each lamina. By virtue of the continuity conditions between two adjacent layers, a se
order linear algebraic equation and a fourth-order one about the boundary variable
the inner and outer surfaces of a multilayered spherical shell are obtained. Nume
examples are presented to show the effectiveness of the present method.
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1 Introduction
Spherical isotropy is a special kind of transverse isotropy t

was introduced in 1865 by Saint-Venant, who gave an exact
lution of a spherically isotropic spherical shell subjected to b
internal and external uniform pressures~@1,2#!. Hu @3# first initi-
ated to use a separation method and presented a general the
elasticity for a spherically isotropic medium. Many subsequen
important analyses were inspired by and based on Hu’s ele
method. For instance, Chen@4# utilized Hu’s method~@3#! to in-
vestigate some static problems such as a concentrated force
infinite medium, stress concentration due to a spherical cav
and a steadily rotating shell. Puro@5# generalized the separatio
method to the inhomogeneous case. Shul’ga et al.@6# considered
the free-vibration problem of a nonhomogeneous spherically
tropic spherical shell. Chau@7# recently extended Hu’s formula to
consider the toroidal vibration of a spherically isotropic so
sphere. In the monograph of Ding et al.@8#, there is a detailed
description on the coupled vibrations of spherically isotropic h
low spheres.

The interest of the study of spherically isotropic materi
comes not only from the academic tradition, but also from the f
that they have been widely applied in aerospace and many o
industries~@9,10#!. More importantly, the latest investigation o
geophysics showed that an appropriate model of the Earth sh
be a multilayered spherical shell including layers with spheri
isotropy ~@11#!. Using such a model, Ding et al.@12# studied the
effect of anisotropy on the tidal stress of the Earth.

The state-space-based method~also known as the method o
initial function! is a powerful tool for solving problems of lami
nated structures~@13,14#!. It can effectively reduce the order o
the final solving matrix and greatly improve the computation
precision. It is mentioned here that Shul’ga et al.@6# firstly pre-
sented two separated state equations with varying coefficien

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, A
gust 26, 1999; final revision, June 7, 2000. Associate Technical Editor: R. C. Ben
Discussion on the paper should be addressed to the Technical Editor, Pro
Lewis T. Wheeler, Department of Mechanical Engineering, University of Hous
Houston, TX 77204-4792, and will be accepted until four months after final pu
cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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spherical coordinates for spherically isotropic elasticity. Howev
they completely have overlooked the superiority of the sta
space-based method in the analysis of laminated structures
they treated the two state equations just as the intermediate e
tions in simpler forms that were solved by a numerical metho

This paper presents two separated state equations by emplo
the separation formulae for displacements and shear stresse
variable substitution method is then employed to transfer the
sulting equations to the ones with constant coefficients. By e
ploying the matrix theory and utilizing the continuity conditions
each interface, two relationships are obtained between the bo
ary variables at the inner and outer surfaces of a laminated sp
cal shell. The numbers of the final solving equations correspo
ing to the two separated state equations are only one and
respectively, for a specified boundary value problem. Numer
example is given for a three-layered spherical shell subjected t
external distributed pressure.

2 Basic Equations
The basic equations of a spherically isotropic elastic body

well described in the monograph of Lekhnitskii@2# or more re-
cently in the book of Ding et al.@8#. For the sake of the followed
analysis, we give these equations in this section in a slightly
ferent way. Assuming the center of the spherical isotropy coin
dent with the origin of spherical coordinates (r ,u,f), the linear
constitutive relations can be rewritten as follows:

5
Suu5rsuu5c11Suu1c12Sff1c13Srr ,
Sff5rsff5c12Suu1c11Sff1c13Srr ,
S rr 5rs rr 5c13Suu1c13Sff1c33Srr ,
S ru5rs ru52c44Sru ,
S rf5rs rf52c44Srf ,
Suf5rsuf52c66Suf ,

(1)

where s i j is the stress tensor,ci j are elastic constants, and th
relationc115c1212c66 holds for spherical isotropy.Si j in Eq. ~1!
is the ‘‘generalized strain tensor’’ determined by

-
son.
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¦

Srr 5rsrr 5¹2ur ,Suu5rsuu5
]uu

]u
1ur ,

Sff5rsff5
1

sinu

]uf

]f
1ur1uu cotu,

2Sru52rsru5
]ur

]u
1¹2uu2uu ,

2Srf52rsrf5
1

sinu

]ur

]f
1¹2uf2uf ,

2Suf52rsuf5
1

sinu

]uu

]f
1

]uf

]u
2uf cotu,

(2)

where¹25r ]/]r , si j is the strain tensor,ui ( i 5r ,u,f) are three
displacement components. The equations of equilibrium in te
of stresses can easily be transformed into the following forms

¦

¹2S ru1cscu
]Suf

]f
1

]Suu

]u
12S ru

1~Suu2Sff!cotu50,

¹2S rf1cscu
]Sff

]f
1

]Suf

]u
12S rf

12Suf cotu50,

¹2S rr 1cscu
]S rf

]f
1

]S ru

]u
1S rr 2Suu

2Sff1S ru cotu50.

(3)

3 The State-Space-Based Formulations
It is not difficult to establish the corresponding state equat

by directly choosing (ur ,uu ,uf ,S rr ,S ru ,S rf) as the state vari-
ables. It has, however, been shown that, by employing cer
separation formulae~@3,6,15#!, not only can the basic equations b
decoupled with order reduced, the subsequent solving proce
also becomes simpler. It is thus assumed that

uu52
1

sinu

]c

]f
2

]G

]u
, uf5

]c

]u
2

1

sinu

]G

]f
, ur5w, (4)

and

S ru52
1

sinu

]S1

]f
2

]S2

]u
, S rf5

]S1

]u
2

1

sinu

]S2

]f
, (5)

wherew, G andc are three displacement functions whileS1 and
S2 are two stress functions.

Utilizing Eqs.~4! and~5!, through some lengthy manipulation
one can obtain the following equations from Eqs.~1!–~3!:

¹2HS1

c J 5F 22 2c66~¹1
212!

1

c44
1 G HS1

c J , (6)

¹2H S rr

S2

G
w
J 53

2b21 ¹1
2 k1¹1

2 22k1

b 22 k2¹1
222c66 2k1

0
1

c44
1 1

1

c33
0 b¹1

2 22b
4 H S rr

S2

G
w
J ,

(7)

where ¹1
25]2/]u21cotu(]/]u)1csc2 u(]2/]f2) is the two-

dimensional Laplacian on a spherical surface and

b5c13/c33, k152c13b2~c111c12!, k25k1/22c66.
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To eliminate the partial operator¹1
2 contained in Eqs.~6! and~7!,

it can be assumed for a closed spherical shell

¦

S15 (
m50

n

(
n50

`

S1n~r !Sn
m~u,f!,

c5 (
m50

n

(
n50

`

cn~r !Sn
m~u,f!,

S rr 5 (
m50

n

(
n50

`

S rn~r !Sn
m~u,f!,

S25 (
m50

n

(
n50

`

S2n~r !Sn
m~u,f!,

G5 (
m50

n

(
n50

`

Gn~r !Sn
m~u,f!,

w5 (
m50

n

(
n50

`

wn~r !Sn
m~u,f!,

(8)

where Sn
m(u,f)5Pn

m(cosu)eimf are spherical harmonics an
Pn

m(x) are the associated Legendre polynomials, andn andm are
integers. From the derivations in the following, it will be show
that the integerm will not appear in the resulting ordinary differ
ential equations about the unknown functionsS1n(r ) andcn(r ),
etc., so that we needn’t indicate it in the subscript of these fu
tions in Eq.~8! and hereafter. From Eqs.~4! and~5!, it is clear that
S10, c0 , S20, andG0 all vanish in the final expressions of dis
placements and stresses, so that they can be assumed zero.
Eqs.~6! and ~7!, it is obtained that

r
d

dr HS1n

cn
J 5F 22 c66~ l 22!

1

c44
1 G HS1n

cn
J , (9)

r
d

dr H S rn

S2n

Gn

wn

J 53
2b21 2 l 2k1l 22k1

b 22 2k2l 22c66 2k1

0
1

c44
1 1

1

c33
0 2b l 22b

4
3H S rn

S2n

Gn

wn

J , (10)

where l 5n(n11). It can be seen that Eqs.~9! and ~10! are two
separated state equations with varying coefficients.

Considering ap-ply spherical shell, Fig. 1, for thei th layer, the
following variable substitution is taken:

r 5aie
j, ~ i 51,2,¯ ,p;0<j<j i !, (11)

where ai and bi are the inner and outer radii of thei th layer,
respectively, andj i5 ln(bi /ai). Substituting Eq.~11! into Eqs.~9!
and ~10! gives

d

dj
T1ni5M1niT1ni , ~n51,2,3,̄ !, (12)

d

dj
T2ni5M2niT2ni , ~n50,1,2,̄ !, (13)

where

T1ni5@ t1n1i ,t1n2i #
T5@ t1n1 ,t1n2# i

T ,
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T2ni5@ t2n1i ,t2n2i ,t2n3i ,t2n4i #
T5@ t2n1 ,t2n2 ,t2n3 ,t2n4# i

T ,

and

t1n15S1n /~a1c44
~1!!, t1n25cn /a1 ,

t2n15S rn /~a1c44
~1!!, t2n25S2n /~a1c44

~1!!,

t2n35Gn /a1 , t2n45wn /a1 , (14)

M1ni5F 22
~ l 22!c66

c44
~1!

c44
~1!

c44

1
G ,

M2ni53
2b21 2 l 2

k1l

c44
~1! 2

2k1

c44
~1!

b 22
2k2l 22c66

c44
~1! 2

k1

c44
~1!

0
c44

~1!

c44

1 1

c44
~1!

c33

0 2b l 22b

4 , (15)

wherec44
(1) represents the elastic constant in the first layer. I

noted here that a nondimensionalization procedure has been
to derive the state Eqs.~12! and ~13!. Thus in each lamina, we
have established two separated state equations with constan
efficients in a dimensionless form. The solutions to these
equations will be presented in the next section.

4 The Solution Method
Utilizing the matrix theory, solutions to Eqs.~12! and ~13! are

T1ni~j!5exp~M1nij!T1ni~0!, ~n51,2,3,̄ ;0<j<j i !,
(16)

Fig. 1 The geometry of a p -ply spherical shell
Journal of Applied Mechanics
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T2ni~j!5exp~M2nij!T2ni~0!, ~n50,1,2,̄ ;0<j<j i !,
(17)

where the exponential matrices exp(M1nij) and exp(M2nij) are
known as the transfer matrices, which can be expressed in te
of polynomials about the matricesM1ni and M2ni , respectively,
through the use of Cayley-Hamilton theorem~@16#!.

Settingj5j i in Eqs.~16! and ~17! gives

T1ni~j i !5exp~M1nij i !T1ni~0!, ~n51,2,3,̄ ; i 51,2,¯ ,p!,
(18)

T2ni~j i !5exp~M2nij i !T2ni~0!, ~n50,1,2,̄ ; i 51,2,¯ ,p!.
(19)

Thus we have established relations between the state variabl
the inner and outer surfaces of thei th layer. Further allowing for
the continuity conditions at each interface, we can finally get

T1np~jp!5S1nT1n1~0!, ~n51,2,3,̄ !, (20)

T2np~jp!5S2nT2n1~0!, ~n50,1,2,̄ !, (21)

where S1n5) i 5p
1 exp(M1ni j i) and S2n5) i 5p

1 exp(M2nij i) are
the second-order and fourth-order square matrices, respecti
Through these two matrices, the boundary variables at the in
and outer surfaces of a multilayered spherical shell are conne
directly. For a specified boundary value problem, one does
need to solve a second-order and/or a fourth-order algebraic e
tion as shown by Eq.~20! and/or Eq.~21!. For example, when the
stresses are specified, i.e.,t1n11(0), t1n1p(jp) and t2n j1(0),
t2n jp(jp) ( j 51,2) are known, one can get from Eqs.~20! and~21!

S1n12t1n21~0!5t1n1p~jp!2S1n11t1n11~0!, ~n51,2,3,̄ !,
(22)

FS2n13 S2n14

S2n23 S2n24
G H t2n31~0!

t2n41~0!J 5 H t2n1p~jp!

t2n2p~jp!J 2FS2n11 S2n12

S2n21 S2n22
G

3H t2n11~0!

t2n21~0!J , ~n50,1,2,̄ !,

(23)

where S1ni j and S2ni j are the elements on thei th row and j th
column of the matricesS1n andS2n , respectively. After the state
variables of the inner surface are solved, the state variables a
interior point can be obtained by using the following formulae

T1n j~j!5exp~M1n jj! )
i 5 j 21

1

exp~M1nij i !T1n1~0!,

~n51,2,3,̄ ;0<j<j j !, (24)

T2n j~j!5exp~M2n jj! )
i 5 j 21

1

exp~M2nij i !T2n1~0!,

~n50,1,2,̄ ;0<j<j j !. (25)

The induced variablesSuu , Sff , andSuf are determined by
5
Suu2Sff52c66S ¹1

2G22
]2G

]u2 12 cotu cscu
]c

]f
22 cscu

]2c

]u]f D ,

Suu1Sff52bS rr 1k1¹1
2G22k1w,

Suf52c66S ¹1
2c22

]2c

]u222 cotu cscu
]G

]f
12 cscu

]2G

]u]f D
. (26)
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5 Numerical Examples

Consider a three-layered spherical shell subjected to distrib
uniform pressureq over the ranges 0<u<u0 andp2u0<u<p
at the outer surfacer 5b ~see Fig. 2!. From Fig. 2, one hasa
5a1, b5b3 , and h5b/k5(12cosu0)b. Obviously whenk51,
112 Õ Vol. 68, JANUARY 2001
ted

the whole outer surface will undergo a uniform pressure, while
k→`, the spherical shell will be subjected to a couple of conc
trated forces applied at the two poles. Because the problem
sidered is axisymmetric for which one hasm50 in Eq. ~8!, the
distributed pressure can be expanded in the form
(n50

` anPn(cosu), where the coefficientsan are given by
an5H q

m
, n50,

@12~21!n11#FPn21S m21

m D2Pn11S m21

m D G q

2
, n.0.

(27)
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Figures 3 and 4 display the distributions of the nondimensio
stress s rr /q and the nondimensional radial displacementūr

5c44
(1)w/(bq) for a spherical shell subjected to external unifor

pressure (k51). The following three cases are considered:~1! the
three layers are of the same isotropic material;~2! the three layers
are of the same anisotropic material; and~3! the inner and the
outer layers are anisotropic and the intermediate one is isotro
The elastic constants of the two materials are listed in Table
where for the isotropic material, the elastic constants,ci j , are
determined by

c115c335
E~12n!

~11n!~122n!
, c125c135

En

~11n!~122n!
,

Fig. 2 A three-layered spherical shell under distributed pres-
sures

Fig. 3 Distribution of the nondimensional radial stress s rr Õq
in the radial direction „kÄ1…
nal

m

pic.
1,

c445c665
E

2~11n!
, (28)

whereE and n are the Young’s modulus and the Poisson rat
respectively.

Throughout the calculation, we shall take

a15a50.5b, a25b150.7b, a35b250.8b, b35b.

The problem of a homogeneous spherical shell subjected to
form internal and external pressures is spherically symmetric
which the solution has been given by Saint-Venant~@1,2#!. Our
results of cases~1! and ~2! are found identical to Saint-Venant’
solution.

It can be seen from Fig. 3 that, though the difference betw
the normal stresses of cases~1! and ~2! is very small~for other
materials, the difference may become obvious!, in the case of a
laminate, i.e., for case~3!, the distribution of the normal stres
changes greatly. Not only the stress gradient has a sudden ch
at the interface, the stress level is also raised. Such a fact is n
good thing to the engineering design. However, Fig. 4 shows

Fig. 4 Distribution of the nondimensional radial displacement
ū rÄc 44

„1…w Õ„bq … in the radial direction „kÄ1…

Table 1 Elastic constants
Transactions of the ASME
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utilizing the laminate structures, one can improve the a
deformation ability of the spherical shell effectively. Thus in pra
tice, a proper design should be made based on a thorough e
ation of relative factors as mentioned above.

In the case of nonuniform pressure, i.e.,kÞ1, we takek54 in
the numerical calculation. Figures 5 and 6 give the radial dis
butions ofs rr /q and ūr whenu5p/6. Figures 7 and 8 give the
circumferential distributions ofs rr /q and ūr at the interfacer
5a250.7b. Figures 9 and 10 display the radial distributions

Fig. 5 Distribution of s rr Õq in the radial direction „kÄ4, u
ÄpÕ6…

Fig. 6 Distribution of ū r in the radial direction „kÄ4, uÄpÕ6…

Fig. 7 Distribution of s rr Õq in the circumferential direction
„kÄ4, rÄ0.7b …
Journal of Applied Mechanics
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suu /q andsff /q whenu5p/6. It can be seen that for a multi
layered spherical shell, bothsuu and sff have a sudden jump
across the material interface.

As mentioned earlier, whenk→`, one will obtain the solution
to the problem of a spherical shell subjected to a couple of b
anced concentrated forces applied at two poles. Table 2 sh
such a procedure, wherep5P/(2pb2)52pbhq/(2pb2)5qh/b
5q/k, and P is the radial resultant of the unilateral distribute
pressure. It can be seen that the solution for a distributed pres
over a very small spherical surface (k51024) agrees well with

Fig. 8 Distribution of ū r in the circumferential direction „k
Ä4, rÄ0.7b …

Fig. 9 Distribution of suu Õq in the radial direction „kÄ4, u
ÄpÕ6…

Fig. 10 Distribution of sff Õq in the radial direction „kÄ4, u
ÄpÕ6…
JANUARY 2001, Vol. 68 Õ 113
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the one for a concentrated force that is obtained by directly
panding thed-function in terms of the Legendre polynomia
~@17#!.

6 Discussion and Conclusion
As mentioned earlier,S10, c0 , S20, andG0 all vanish in the

final expressions of displacements and stresses. In fact, whn
50, Eqs.~9! and ~10! degenerate to the following equation:

r
d

dr HS r0

w0
J 5F 2b21 22k1

1

c33
22b G HS r0

w0
J . (29)

It can be shown that the Saint-Venant’s solution can be exa
derived from Eq.~29!. Following the procedure described in Se
tion 3 and Section 4, one can also get a series of state-space-
formulae forn50. Noticing that in this case, the transfer matr
will be of second order. However, our calculation for the Sai
Venant’s problem based on the fourth-order one, which does
distinguish whethern50 or not, is shown valid. Thus one ca
uniformly adopt the formulations presented in Section 3 and S
tion 4 for all n.

Table 2 The variations of s rr Õp and c 44
„1…w Õ„bp … with the pa-

rameter k for uÄpÕ2
114 Õ Vol. 68, JANUARY 2001
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The present state-space-based method is superior to other
ventional solution methods. Numerical examples show that, e
cially for a spherical shell with many layers, the method c
greatly reduce the computing time. Since it is completely based
three-dimensional elasticity for spherical isotropy, it can be
benchmark to check the validity of any two-dimensional appro
mate shell theories or numerical methods.
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Large Deformations of a Rotating
Solid Cylinder for Non-Gaussian
Isotropic, Incompressible
Hyperelastic Materials
The purpose of this research is to investigate the steady rotation of a solid cylinder
class of strain-energy densities that are able to describe hardening phenomena in ru
It is well known that use of the classic neo-Hookean strain energy gives rise tophysically
unrealisticresponse in this problem. In particular, solutions exist only for a sufficien
small angular velocity. As the velocity approaches this limiting value, the analysis
dicts that the rotating cylinder collapses to a disk. It is shown here that this nonphy
behavior does not occur when generalized neo-Hookean models, which exhibit hard
at large deformations, are used.@DOI: 10.1115/1.1349418#
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1 Introduction
Usually elastomeric materials are conveniently represente

terms of a strain-energy density functionW. Thus, given an unde
formed reference state, the state of strain is characterized by
principal stretchesl1 ,l2 ,l3 of the deformation or equivalently
by introducing a strain measure such as the left Cauchy-G
tensorB5FFT, whereF is the gradient of the deformation. For a
isotropic material,W is a function of the strain invariants

I 15trB, I 25trB, I 35detB. (1)

Rubber can be considered to behave in an incompressible ma
as long as the hydrostatic stress does not become too large.
it is common to adopt the assumption of incompressibility so t
the admissible deformations must be isochoric, i.e., detF51 so
that I 351.

The basic strain-energy densities for rubber elasticity are
neo-Hookean strain-energy

W5
m

2
~ I 123!, (2)

wherem is the constant shear modulus for infinitesimal deform
tions and the Mooney-Rivlin strain-energy

W5m1~ I 123!1m2~ I 223!, (3)

wherem1 andm2 are constant parameters. The theoretical pred
tions based on these strain-energy density functions do not
equately describe experimental data especially at high value
strain. For example, the strain energies in~2! and~3! are not able
to describe the characteristicS-shaped load versus stretch cur
exhibited in simple tension experiments.

To model the typical hardening at large deformations, a num
of alternative models have been proposed. In the molecular th
of elasticity ~see, e.g.,@1#! these models are usually called no
Gaussian, because they introduce a distribution function for
end-to-end distance of the polymeric chain which is not Gauss

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
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From the phenomenological point of view the non-Gaussian m
els can be divided into two classes: models with limiting cha
extensibility and strain-hardening models.

The simplest example of the first class is the model due to G
@2# who proposed the strain-energy density

WI52
m

2
Jm lnS 12

I 123

Jm
D , (4)

wherem is the shear modulus andJm is the constant limiting value
for I 123, taking into account limiting polymeric chain extensibi
ity. The response of this material in simple extension is descri
in @2#. This strain-energy density gives theoretical predictio
similar to the more complicated Arruda and Boyce eight ch
model ~@3#!. Note that from the strain-energy~4! we recover the
neo-Hookean model on taking the limit asJm→`. For further
discussion of~4! and related constitutive models, see@4–6# where
solutions to the torsion, axial shear and circular shear proble
have been obtained.

An example of the second class is the power-law material fi
proposed by Knowles in@7# in the context of anti-plane shear

W5
m

2b F S 11
b

n
~ I 123! D n

21G , (5)

wherem is the shear modulus, andb andn are positive material
constants. Whenn51 in ~5! we recover the neo-Hookean mode
It was shown by Knowles@7# that the material modeled by~5! is
hardening in simple shear ifn.1. A similar model to~5! has
been derived by Erman and Mark@8# in the framework of the
molecular theory of elasticity using a generalized Fixman-Alb
distribution for the end-to-end length of the molecular chains. T
Fixman-Alben distribution function also models hardening at h
strains without considering limiting chain extensibility.

The aim of this paper is to consider the deformation of a ste
rotating solid cylinder of radiusA for the materials~4! and ~5!.
The rotating cylinder problem is investigated in an interest
paper by Chadwick et al.@9# ~see also the book@10#!. As shown in
@9,10# and discussed briefly below in Section 2, the neo-Hooke
model ~2! gives rise tophysically unrealisticresponse in this
problem. In particular, solutions exist only for a sufficiently sm
angular velocity. As the velocity approaches this limiting valu
the analysis predicts that the rotating cylinder collapses to a d
Our purpose here is to show that this nonphysical behavior d
not occur when the non-Gaussian models~4! and ~5! are used. It
should be noted that the nonphysical predictions of the n
Hookean model may be also avoided on using the Mooney-Ri

ics
per
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E
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strain-energy~3!. However, our goal here is to demonstrate t
advantages of using generalized neo-Hookean models withW
5W(I 1) which exhibit material hardening at larg
deformations.

2 Steady Rotation of a Solid Circular Cylinder
We consider the steady rotation~at constant angular velocityv

about its central axis!, of a solid circular cylinder, of radiusA in
the reference configuration, composed of a homogeneous inc
pressible isotropic hyperelatic material. The lateral surface of
cylinder is traction-free and the cylinder is assumed sufficien
long so that end effects are ignored. Thus the traction-free bou
ary conditions at the ends are to be satisfied globally rather
pointwise. This problem has been formulated and extensively
vestigated by Chadwick et al.~@9#! where references to earlie
work may be found.

The kinematics of the deformation is described by

r 5
R

l1/2, u5U1vt, z5lZ, (6)

where the material and spatial cylindrical polar coordinates
denoted by (R,U,Z) and (r ,u,z). Herel andv are positive con-
stants andt denotes the time. In this case the principal stretc
are given by

l15l21/2, l25l21/2, l35l (7)

and, as shown in@9#, the balance equations reduce to the sca
equation

M ~l![l2Ŵ8~l!52
r

4
v2A2, (8)

whereŴ8(l)[dŴ/dl andŴ(l)5W(l21/2,l21/2,l).
For thestaticproblem of a circular shaft under axial loading,

is discussed by Ogden~@10#, p. 305!, Haughton and Ogden~@11#
p. 253!, one would expectextensionof the shaft to occur when the
loading istensilewhile contractionshould occur when the loadin
is compressive. Thus the strain-energy densityŴ(l) is assumed
to satisfy the constitutive assumptions

Ŵ8~l!H .0 if l.1,

50 if l51,

,0 if l,1.

(9)

By virtue of ~8!, we see that the latter inequality holds for th
rotating shaft whenvÞ0. Thus, as pointed out in~@10,11#!! rota-
tion is accompanied byshorteningof the cylinder.

For example, for the neo-Hookean material~2! we have

Ŵ~l!5
m

2
~2l211l223! (10)

so that

M ~l!5m~l321!. (11)

Thus from~8! one obtainsl in terms ofv as

l5S 12
v2

v0
2D 1/3

, (12)

wherev0
254m/rA2. As was pointed out in@9#, sincel.0, the

solution ~12! is meaningful only forv,v0 . The features of this
simple solution are physically unrealistic because it implies t
the cylinder collapses to a disk~i.e.,l→0! for a finite value of the
angular velocity. Moreover it is not clear why solutions should n
exist for all possible values of the velocity. Thus, the predictio
of the neo-Hookean model are not physically realistic for t
problem.

For the Gent material~4!, one finds that
116 Õ Vol. 68, JANUARY 2001
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Ŵ~l!52
m

2
Jm lnS 12

2l211l223

Jm
D . (13)

The second and third of the inequalities in~9! now show thatl is
restricted to the range

lm,l<1, (14)

wherelm is the smallest positive root of the cubic

l32~31Jm!l1250. (15)

This root is given by

lm52AJm13

3
sin F1

3
arcsinS 3A 3

~Jm13!3D G . (16)

As Jm→0 we havelm→1, whereas forJm.0 we havelm,1.
Equation~8! now reads

M ~l!

m
[

l321

12
2l211l223

Jm

52
r

4m
v2A2. (17)

In Fig. 1, we have plotted2M (l)/m versus l for the neo-
Hookean material and for the Gent material. The valueJm597.2
is chosen since this is the value obtained by Gent from fitting w
uniaxial data~@2#!. Thuslm50.01996.

The contrasting behavior predicted by the two material mod
is evident from Fig. 1. For the Gent material, a unique solut
exists for allv2. Furthermore, sincel.lm , the nonphysical pre-
diction of collapse to a disk is now eliminated.

For the power-law material~5! we have

Ŵ~l!5
m

2b F S 11
b

n
~2l211l223! D n

21G . (18)

In contrast with the situation for the Gent material, the consti
tive inequalities~9! do not impose any minimum allowable valu
of l in this case.

Equation~8! reads

M ~l!

m
[S 11

b

n S 2

l
1l223D D n21

~l321!52
r

4m
v2A2.

(19)

There are now several possibilities. Consider, for example,
casesn53/2 andn51/4, respectively, and for simplicity we tak
b51. The results are plotted in Fig. 2. Forn53/2 ~solid curve!,
the behavior is similar to that predicted by the Gent materia
Fig. 1. Forn51/4 ~dashed curve!, the behavior is quite different

The response depicted in Fig. 2 is typical of that exhibited
values ofn.1 andn,1, respectively. We see from~19! that

2
M ~1!

m
50 (20)

Fig. 1 Plot of ÀM„l…Õm versus l for the neo-Hookean and
Gent material. The curve for the Gent material has the vertical
line as an asymptote as l\lm .
Transactions of the ASME
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l→01

S 2
M ~l!

m D5H 1` if n.1,

1 if n51,

0 if n,1.

(21)

Consider first the case of ahardeningmaterial for whichn.1. It
can be shown from~19! that2M (l)/m is monotone increasing in
l for 0,l,1, and so, corresponding to a givenv, there exists a
uniquel. As v→` in ~19!, we see from~21! thatl→01 so that
infinite velocity is required to shorten the cylinder to a disk. T
results for n.1 are similar to those obtained in@9# for the
Mooney-Rivlin material~3!. For asofteningmaterial (n,1) the
M (l)/m versusl curve is no longer monotone and existence
ensured only for values of the velocity less than or equal t
vmax. In fact given av,vmax, there are two values for the cor
responding stretchl. Furthermore, asv→0, it follows from ~19!–
~21! that l→12 or l→01, the latter case corresponding to co
lapse to a disk. The neo-Hookean material~10!, corresponding to
n51 in ~18!, is now seen to be an intermediate special case.

3 The Stress Response
It is shown in @9# that, for an arbitrary incompressible hype

elastic material, the stresses are given by

Trr 5Tuu5
rv2

2l
~A22R2!,

Tzz5Trr 1lŴ8~l! (22)

where, for a prescribedv, the stretchl is obtained from~8!. On
using (22)1 and ~8! in (22)2 , we find that

Tzz5
rv2

2l S A2

2
2R2D . (23)

Observe that the axial stress is tensile on the inner core whe
<R,A/& and compressive on the outer annulus whereA/&
,R<A, with zeroresultantaxial force. The radial dependence
the stress response is explicitly given in~22!, ~23!. The parameter
l in the multiplicative factor (rv2)/2l in ~22!, ~23! can be elimi-
nated on using thev/l relationship~8! discussed in Section 2
Observe from~22!, ~23! that the universal relation

Trr

Tzz
52S A22R2

A222R2D (24)

Fig. 2 Plot of ÀM„l…Õm versus l for the power-law material
nÄ3Õ2 „solid curve … and nÄ1Õ4 „dashed curve …. The solid curve
has the vertical axis as an asymptote as l\0¿.
Journal of Applied Mechanics
e

is
a

-

l-

-

re 0

f

holds. This result is valid for all incompressible isotropic hype
elastic materials.

The stresses induced in rotating cylinders within the theory
linearized elasticity are well known~see, e.g.,@12#, pp. 384–386!.
For anincompressiblelinearly elastic solid, these stresses can
obtained on setting Poisson’s ration51/2. Alternatively, they can
be found from~22!, ~23! on settingl51.

4 Concluding Remarks
The preceding results have been obtained under the ass

tions ~6! that the radial deformation depends only on the rad
coordinate. The possibility of bifurcation from such a configur
tion has been investigated in@11# and illustrated for the Ogden
strain-energy density. We shall not pursue such considerat
here. One of the advantages of the rotating cylinder problem
that it may provide a means of obtaining experimental data
compression while avoiding common instabilities such as bu
ling. Such data is usually difficult to obtain~see, e.g.,@13# for
recent results!. Thus, as we have suggested in the context of t
sion ~@4#!, axial shear~@5#!, and azimuthal shear~@6#!, it is hoped
that the present results may help to provide guidelines for fut
experimental work on large deformations of rubber-like materia
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Analysis of Rigid-Body Dynamic
Models for Simulation of Systems
With Frictional Contacts
The use of Coulomb’s friction law with the principles of classical rigid-body dynam
introduces mathematical inconsistencies. Specifically, the forward dynamics problem
have no solutions or multiple solutions. In these situations, compliant contact mo
while increasing the dimensionality of the state vector, can resolve these problems
simplicity and efficiency of rigid-body models, however, provide strong motivation
their use during those portions of a simulation when the rigid-body solution is unique
stable. In this paper, we use singular perturbation analysis in conjunction with lin
complementarity theory to establish conditions under which the solution predicted b
rigid-body dynamic model is stable. We employ a general model of contact complian
derive stability criteria for planar mechanical systems. In particular, we show that
cases with one sliding contact, there is always at most one stable solution. Our app
is not directly applicable to transitions between rolling and sliding where the Coulo
friction law is discontinuous. To overcome this difficulty, we introduce a smooth nonli
friction law, which approximates Coulomb friction. Such a friction model can also
crease the efficiency of both rigid-body and compliant contact simulation. Nume
simulations for the different models and comparison with experimental results are
presented.@DOI: 10.1115/1.1331060#
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1 Introduction

There are many applications in an industrial setting where
beneficial to understand the dynamics of systems with frictio
contacts. Examples include part-feeding systems~@1#! and auto-
matic assembly of mechanical components~@2#!. Examples of me-
chanical systems with frictional contacts include multifinger
grippers~@3#!, multiarm manipulation systems~@4#!, legged loco-
motion systems, and wheeled robots on uneven terrain~@5#!. In
order to successfully design and optimize such mechanical
tems or manufacturing processes, a method for modeling
simulating mechanical systems with frictional contacts is nec
sary ~@6#!.

In a forward dynamics problem, it is well known that in th
frictionless case there is always a unique solution for the ac
erations. When the constraints are not all independent, the sy
is statically indeterminate and the constraint forces cannot
uniquely determined. In the frictional case, if all contacts a
known to be rolling~sticking!, the existence of a solution can b
shown if the constraints are independent~@7#!. In all other cases,
the initial value problem can be shown to have no solution
multiple solutions for special choices of initial conditions~@8,9#!.
The major difficulty of proving existence and uniqueness ari
when rigid-body models are combined with friction laws coupli
normal and tangential contact forces. In these situations, it is
tractive to pursue models in which the contact forces are exp
functions of the state variables. For example, a continuum mo
for modeling the deformations at each contact is described
~@10#!. Each contact is modeled as frictional elastic or viscoelas
and the contact force distribution across the contact patch is
culated using a finite element mesh. This general approach is

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ju
23, 1999; final revision, June 16, 2000. Associate Editor: A. A. Ferri. Discussion
the paper should be addressed to the Editor, Professor Lewis T. Wheeler, Depa
of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
ASME JOURNAL OF APPLIED MECHANICS.
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ther refined by@11#. Existence and uniqueness is shown for t
special case in which the maximum tangential force at each p
is a priori known.

The empirical nature of friction models can cause additio
difficulties with dynamic simulation. The most widely employe
model, for example, is Coulomb friction. When used in combin
tion with a rigid-body contact model, the tangential force is
discontinuous function of the sliding velocity and independent
tangential displacement. Furthermore, this model does not pre
such phenomena as microslip, hysteresis, and local adhe
~@12#!. Both these difficulties can be overcome by combining t
Coulomb friction model with a simple lumped model of comp
ance~e.g., the Kelvin-Voigt model@13#!. At very small displace-
ments, the tangential force opposes the tangential displacem
simulating an approximately linear spring. For small oscillato
displacements, hysteric behavior is exhibited as in@14#. With a
suitable modification to the Coulomb friction model, the stead
state friction force can be made to decrease with increasing ve
ity thus simulating the development of a lubricant film~@12#!.
However, while the difficulty with discontinuities is eliminated
such Coulomb-like friction laws are generally not smooth. T
laws are described by separate equations for rolling and slid
contact and are not differentiable at transitions between rol
and sliding. We will overcome this difficulty by introducing
friction model that depends on normal force, but which is contin
ously differentiable.

In this paper, we derive a simplecompliant contact modelthat
~a! provides a framework for analyzing frictional forces for co
straint dynamic systems; and~b! establishes a unique solution fo
initial value problems in dynamic simulation. We use metho
from singular perturbation analysis to establish conditions un
which the solution predicted by the rigid-body model isstable.
We argue that rigid-body dynamic simulation is meaningful on
when the solution of the compliant contact model converges to
solution of the rigid-body model. Experimental results and n
merical simulations are illustrated to verify the stability analys
We also describe stability results using asmooth nonlinear fric-
tion law which is an alternative to the Coulomb’s friction mode
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2 Rigid-Body Models
The dynamic equations of motion for a mechanical syst

comprised of rigid bodies subject to Coulomb friction can be w
ten in the form

M ~q!q̈1h~q,q̇!5u1Fq
Tl (1)

whereqPRn is the vector of generalized coordinates,M (q) is an
n3n positive-definite symmetric inertia matrix,h(q,q̇) is a n
31 vector of nonlinear inertial forces,u is the vector of applied
~external! forces and torques, andl is the vector of constrain
forces. The system is subject tok unilateral constraints:

F~q!5~f1~q!,¯ ,fk~q!!T>0 (2)

andFq in Eq. ~1! is thek3n Jacobian matrix,]F/]q. We will
assume, without loss of generality, that this does not include
lateral, holonomic constraints. Further, for the sake of simplic
we will assume that nonholonomic constraints are not presen

Suppose there arec contacts, consisting ofr rolling contacts
ands sliding contacts. Let the subscriptsN andT denote quantities
in the normal and tangential contact directions and the subsc
S and R denote sliding and rolling contacts, respectively. T
Jacobian matrix and constraint forces in Eq.~1! are given by

Fq
T5~F̂Sq

T FNRq

T FTRq

T !, F̂Sq

T 5~FNSq

T 1FTSq

T ms!, (3)

l5~lNS
T lNR

T lTR
T !T, (4)

wherems52diag(m sign(ḞTS)), m is as3s diagonal matrix that
contains all the coefficients of friction at the sliding contacts,F̂Sq

is a s3n matrix, FNRq
andFTRq

are bothr 3n matrices, and the
total number of constraintsk52r 1s. lNS is the s-dimensional
vector of normal forces at sliding contacts, whilelNR andlTR are
the r 31 vectors of normal and tangential forces at rolling co
tacts, respectively.

Contacts between rigid bodies generate complementary
straints on the position~or velocity or acceleration! variables and
the corresponding force variables. In the normal direction, if
new contact becomes active over a finite time interval, then in
interval, there is a complementary equation satisfied by the r
tive normal acceleration,f̈N,i , and the normal force,lN,i ~@8#!

f̈N,i>0, lN,i>0, f̈N,ilN,i50, i 51, . . . ,c. (5)

This complementary constraint is valid for all sliding contac
~indexed by the subscripti 51, . . . ,s! and rolling contacts~in-
dexed byi 5s11, . . . ,c!. SubscriptsR andSare omitted for con-
venience. This condition allows active contacts to become in
tive. The case of inactive contacts becoming active is modeled
rigid-body impacts and is treated elsewhere~@13#!. Similar
Journal of Applied Mechanics
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complementarity constraints can be found in the tangential di
tion by assuming Coulomb’s friction. We refer the reader to~@15#!
for details.

The problem of determining contact forces can be reduced
linear complementarity problem~LCP! that has the form~@7#!

x>0, y5Ax1B.0, yTx50. (6)

The LCP has a unique solution for all vectorsB if an only if the
matrix A is a P matrix ~@16#!. However, even ifA is not a P
matrix, the LCP may have unique solution for special choices
B. For other choices ofB, Eq. ~6! may have no solution or mul-
tiple solutions. To overcome these inconsistencies, we cons
more sophisticated models of contact interactions in the n
section.

3 Compliant Contact Models
Our contact model of compliance assumes that the principle

rigid-body dynamics are valid and the gross motion of the d
namic system is described by the state variables (q,q̇). However,
in addition to the gross motion, there are small~local! deforma-
tions at each contact. Thus a rigid body can be modeled as a
core surrounded by a very thin deformable layer the inertia
which is considered to be negligible, as shown in the schemati
Fig. 1. The gross rigid-body motion determines the relative d
placement at the contact point (fT ,fN). The actual relative dis-
placement of the contact point is given by (fT1dT ,fN1dN).
The contact forces are related to the normal and tangential de
mations (dN ,dT) of the deformable layer and their derivative
( ḋN ,ḋT) through the material properties of the deformable lay

A general viscoelastic model for contact compliance is sho
in Fig. 1. At contacti, the normal and tangential contact force
(lN,i and lT,i! between the two contacting bodies may be mo
eled as

lN,i5 f N,i~dN,i !1gN,i~dN,i ,ḋN,i !, i 51, . . . ,c, (7)

lT,i5 f T,i~dT,i !1gT,i~dT,i ,ḋT,i !, i 51, . . . ,c, (8)

where the functionsf N,i and f T,i are the elastic stiffness terms an
gN,i andgT,i are the damping terms in the normal and tangen
directions, respectively. These functions depend on the geom
and material properties of the two bodies in contact and may
nonlinear. We have decoupled the modeling of the contact for
~i.e., the force at a contact is only dependent on the deformatio
that contact!. We will consider the case where the tangential for
obeys Coulomb’s frictional law:

ulT,i u<m ilN,i . (9)

An alternative frictional model is discussed in Section 7.
Fig. 1 A simple model of contact compliance
JANUARY 2001, Vol. 68 Õ 119
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The simplest viscoelastic model is the Kelvin-Voigt mod
given by

f i5Kid i , gi5Ci ḋ i , i 51, . . . ,c, (10)

where Ki and Ci are stiffness and damping coefficients~in the
normal or tangential directions! respectively. The coefficients ca
be estimated using linear elastic and viscoelastic theory for h
spaces~@17#!. A more sophisticated model due to Hunt and Cro
ley ~@18#! incorporates nonlinear elastic and dissipation terms

f i5Kid i
b , gi5

3

2
aKid i

bḋ i , i 51, . . . ,c, (11)

where a and b are functions of the material properties and t
local geometry.

In any of the above models, the normal deformations are
rectly related to the constraints in the normal direction. The n
mal deformations and constraint forces are given by

dN,i5max$0,2fN,i~q!%, (12)

if dN,i.0,

H ḋN,i52ḟN,i~q!, i 51, . . . ,c

lN,i5max$0,f N,i~dN,i !1gN,i~dN,i1 ḋN,i !%.
(13)

In the tangential direction we define a new variable,s i , to denote
the relative sliding velocity between the~deformed! contact points
at contacti. This quantity is theslip rate, the sum of the tangentia
rigid-body velocity at the contact and the rate of tangential de
mation:

s i5ḟT,i1 ḋT,i .

For rolling contacts, we have

lT,i5 f T,i~dT,i !1gT,i~dT,i ,ḋT,i ! (14)

ḋT,i52ḟT,i~q!, i 5s11, . . . ,c, (15)

in conjunction with the frictional inequality of Eq.~9!. For sliding
contacts,

ḋT,i5hT,i~lT,i2 f T,i~dT,i !!, (16)

lT,i52mlN,isign~s i !, i 51, . . . ,s, (17)

wherehT,i(.) is the inverse of the functiongT,i in Eq. ~8! for a
given dT,i . For both sliding and rolling contacts, we track th
tangential deformations by integrating the expression for
derivative:

dT,i5E
t0

t

ḋT,idt1dT,i~ t0!. (18)

In order to determine which set of equations apply, we s
with the assumption that any contact is rolling. If the tangen
force from Eq.~15! violates the frictional constraint in~9!, the
contact is sliding and Eqs.~16!–~17! yield the correct force with
sign(s i) taken to be the opposite of the sign of the tangen
force in Eq.~15!. It is clear that Eqs.~12!–~18! always provide a
unique answer for the normal and tangential contact forces and
positive-definiteness ofM in Eq. ~1! yields a unique solution for
q̈.

There are two disadvantages of the compliant contact mo
First it is clear that we now need to model the contacts and
increases the possibility of modeling errors. Second, and m
importantly from an computational standpoint, there is a need
extend the dimension of the state space from 2n22(c1r ) to
2n1c in order to track the tangential deformation,dT,i , at each
contact. The three main advantages, which outweigh the disad
tages, are:~a! The normal and tangential forces are now uniqu
determined and there is no question of static indeterminacy;~b!
The difficulties with uniqueness and existence no longer arise;
120 Õ Vol. 68, JANUARY 2001
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~c! A model with tangential contact compliance is more realis
and can better explain physical observations~@13#!.

We do not wish to promote unnecessary model complex
however, and in those situations when a compliant contact mo
is not needed, it would be desirable to retain the simpler rig
body model. The popularity of rigid-body models can be attr
uted not only to their simplicity, but also to the fact that the
produce adequate results in a broad range of applications. Cle
rigid-body models can only be used when a unique solution
be determined without any additional ad hoc assumptions.
even when this is the case, it is meaningful to use the reduc
order rigid-body model only when the solution from the mo
accurate compliant contact model converges to the solution
tained from the rigid-body model. In the next section, we will u
singular perturbation theory to investigate thestability of the so-
lutions obtained from the rigid-body model.

4 Singular Perturbation Analysis
The rigid-body model leads to a set of differential-algebra

equations as shown in Section 2. In the compliant contact mo
the deformations at the contact points are at least an orde
magnitude smaller than the gross motions of the mechanical
tem. By setting these small deformations to zero~or by allowing
the corresponding stiffnesses to be infinitely large!, we recover the
equations of the rigid-body model. This suggests that we can
singular perturbation theory to decompose the system model
reduced~slow time scale! and boundary layer~fast time scale!
models~@19#!. In mechanical systems described by Eq.~1!, the
slow time scale corresponds to the reduced-order rigid-b
model dynamics and the fast time scale is the time scale
characterizes the contact dynamics~@20,21#!. The response of the
system then consists of a slow response and a fast transient.
boundary layer model is exponentially stable, the fast trans
will exponentially converge to zero and it is reasonable to neg
the high-frequency contact dynamics. In such a situation,
reduced-order model obtained by neglecting the complianc
robust to the unmodeled dynamics. If the boundary layer mode
not stable, we cannot neglect these terms and it is necessary t
the complete dynamic model given by Eqs.~12!–~18!.

We first partition the generalized coordinatesq into the fast
variablesq1 , related to the contact deformations, and the rema
ing slow variables,q2 . We accordingly define a new set o
variables:

p5S p1

p2
D5S FN~q1 ,q2!

FTR~q1 ,q2!

q2

D PRn,

where p1 ,q1PRk and p2 ,q2PRn2k. Recall thatk is the total
number of constraints. In order to makep a valid choice of coor-
dinates, the implicit function theorem requires that the Jacob
matrix

G5S FNq~c3n!

FTRq~r 3n!

0~n2k!3k I ~n2k!3~n2k!

D PRn3n

be nonsingular, that is, the contact normals and the rolling t
gents have to be linearly independent. If these conditions are
isfied, we may write

S q̇1

q̇2
D5J~p1 ,p2!S ṗ1

ṗ2
D

whereJ5G21. Note that the choice of thep-coordinates is arbi-
trary as long asG21 exists. The time variable and th
p-coordinates can be nondimensionalized by letting

t̄ 5
t

T
, p̄15D1

21p1 , p̄25D2
21p2 , (19)
Transactions of the ASME
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whereT is the characteristic time scale andt̄ is dimensionless.p̄1
and p̄2 are the nondimensionalized fast and slow variables,
spectively.D1 is a diagonal matrix whose components are
deformation length scales whileD2 is a diagonal matrix of the
characteristic scales of the slow variables. For the sake of sim
ity, all contacts are assumed to have similar physical proper
and the diagonal matrix of the deformation scales can be defi
asD15d1•I k3k . We also define a parametere as the dimension-
less ratio,d1 /L, whereL is the length scale for gross rigid-bod
a

y

-

o
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motions. Asd1 tends to zero,e goes to zero, and the complian
contact model degenerates into the rigid-body model.

We usee and the dimensionless variables in~19! to perform a
second change of coordinates. Let

x5~x1 ,x2!T5~ p̄2 ,p̄28!T, y5~y1 ,y2!T5~ p̄1 ,Ae p̄18!T (20)

be the new state variables and rewrite the dynamic Eqs.~1! in
state space notation:
S Aey18

x18

Aey28

x28

D 5S y2

x2

~T2D21J21M 21Fq
T!l1S T2D21J21M 21~u2h!2TJ21J̇SAey2

x2
D D D , (21)
s
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where 8 denotes the differentiation with respect tot̄ , D
5(0

L•I k3k
D2

0 ), and l i5 f i(2eLy1,i)1gi(2eLy1,i ,2Aey2,iL/T).
Here we use the notationyi , j to refer the j th component of the
vectoryi . x( t̄ ) andy( t̄ ) represent the dimensionless slow and f
trajectories, respectively.

The differential equations for the fast variables are given b

Aey85S y2

A~x,y,e!l̄~y,e!1B~x,y,e!
D (22)

with

l̄~y,e!5S l̄N~y,e!

l̄TR~y,e!
D 5

T2

DML
S lN

lTR
D , l̄N~y,e!>0,

A~x,y,e!5DML~D21J21M 21Fq
T!kk ,

B~x,y,e!5~T2D21J21M 21!kn~u2h!2~TJ21J̇!knSAey2

x2
D ,

where DM is the characteristic mass. Here, (•)ab refers to the
submatrix in ~.! consisting of the firsta rows and the firstb
columns. Ase goes to zero, Eq.~22! degenerates into the follow
ing algebraic equations:

S y2

A~x,y,0!l̄~y,0!1B~x,y,0!
D 502k31 . (23)

We say that the singular perturbation model~21! is in standard
form if and only if the above algebraic equations have at least
isolated real root fory in terms ofx. We will proceed with the
stability analysis with the assumption that Eq.~23! has at least one
feasible solutiony0(x). We now look at the solution to Eq.~21!
with y5y0(x) and e50. This solution, denoted byx0( t̄ ), is the
solution of the reduced rigid-body system.

Assume thatx0( t̄ ) is defined fort̄ P@0,t̄ 1#. At an arbitrary time
instance t̄ 0P@0,t̄ 1#, the boundary layer system of~22! can be
introduced through a ‘‘stretch’’ of the time scale,t5 t̄ 2 t̄ 0 /Ae. In
the stretched time scalet, the variablest̄ and x( t̄ ,e) are slowly
varying. Since t̄ 0 is allowed to take any value in@0,t̄ 1#, the
boundary layer system of~22! can be written witht as the inde-
pendent variable:

y85S y2

A~x0 ,y,0!l̄~y,0!1B~x0 ,y,0!
D (24)

where8 now denotes differentiation with respect tot. Let

S z
z8 D5y2y0~x0!.
st

ne

Perform a linearization of the boundary layer model~24! around
the equilibrium solutiony0(x0). We obtain the homogeneou
boundary layer dynamics of the form

z91Pz81Qz50k31 , (25)

with

P52
]~A~x0 ,y,0!l̄~y,0!1B~x0 ,y,0!!

]y2
U

y5y0~x0!

,

Q52
]~A~x0 ,y,0!l̄~y,0!1B~x0 ,y,0!!

]y1
U

y5y0~x0!

.

The response of the above system equation,z(t), is the transient
that describes the dynamics associated with the compliance a
contact points. The stability of the system implies the converge
of the compliant contact model solutionx( t̄ ,e) to the rigid-body
model solutionx0( t̄ ). We can directly apply Tikhonov’s theorem
@19# to get the following result:
THEOREM 4.1 Consider the system described by (21) and
y0(x) be an isolated solution of (23). If the following three co
ditions are satisfied by(x( t̄ ),y( t̄ ),e) for all t̄ P@0,t̄ 1# and e
P@0,e0#: (a) the terms on the right-hand side of (21) and the
first partial derivatives with respect to(x,y,e) are bounded and
continuous; (b) the origin of the boundary layer system (25)
exponentially stable; and (c)y0(x) has continuous first partial
derivatives with respect to its arguments, then the following
true:

• The reduced rigid-body model, obtained from~21! by substi-
tution of y5y0(x) and e50, has a unique bounded solution,
x0( t̄ ), for all t̄ P@ t̄ 0 , t̄ 1#, where t̄0P@0,t̄ 1#.

• There exist positive constantsd0 and e0 such that for the
initial conditions x( t̄ 0 ,e) and y( t̄ 0 ,e) satisfying iy( t̄ 0 ,e)
2y0(x( t̄ 0,0))i,d0 and0,e,e0 , the singular perturbation
problem has a unique solutionx( t̄ ,e) and y( t̄ ,e) on the in-
terval @ t̄ 0 , t̄ 1# and

x~ t̄ ,e!2x0~ t̄ !5O~Ae!, y~ t̄ ,e!2y0~ t̄ !5O~Ae!.

Proof: The proof of this theorem follows directly from
Tikhonov’s theorem, and is a direct application of Theorem 9.1
@19#.
Remark 4.1

• The stability of the boundary layer system is determined
the matricesP and Q, or specifically, the eigenvalues o
(

2Q
0k3k

2P
I k3k).
JANUARY 2001, Vol. 68 Õ 121
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• Other than the general constitutive model described by E
~7! and ~8!, no specific compliant contact models are intr
duced in the discussion, therefore the stability results will
change when different compliant models are employed.

It is worth noting that the requirements on the continuity of t
first partial derivatives in Theorem 4.1 are not satisfied whene
there are transitions from rolling to sliding or sliding to rollin
because of the nonsmooth nature of Coulomb’s law. In the n
section, we will apply Theorem 4.1 to planar mechanical syste
with one contact and discuss the cases of sliding and rol
separately.

5 Planar Mechanical Systems With One Contact
Consider the planar rigid body depicted in Fig. 2 in contact w

a horizontal surface, whereL is the distance from the contact poin
to the center of mass~CM!. The rigid body has massm and
centroidal moment of inertiaI. q5(y x u)T represent the genera
ized coordinates for the rigid body which are the position of
CM and the angular orientation. (Fx ,Fy) are the external forces
acting on the body andFu is the external moment about the CM
m is the coefficient of friction between the rigid body and surfa
The equations of motion for the system with one contact are gi
by Eq. ~1! with

q5S y
x
u
D , M5S m 0 0

0 m 0

0 0 I
D , u5S Fy

Fx

Fu

D , and h50331 .

(26)

For sliding contact:

Fq
T5~1 ms msL sinu2L cosu!T, l5lN5lNS, (27)

and for rolling contact:

Fq
T5S 1 0

0 1

2L cosu L sinu
D , l5S lNR

lTR
D , (28)

wherems52m sign(ḞT).

5.1 Sliding Contact. For the sliding case, the rigid-bod
dynamics can be modeled as a LCP of the form

F̈N5AlN1B (29)

where

F̈N>0, lN>0, and F̈NlN50,

Fig. 2 Planar rigid body in contact with a rough surface
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I
~cosu2ms sinu!,

B5L u̇2 sinu1
Fy

m
2

L cosuFu

I
.

Note withms50, A.0 and thereforeA is a 131 P matrix, which
guarantees a unique solution. IfB>0 we are guaranteed of th
existence of a solution regardless of whether or notA is a P
matrix.

We now proceed with the singular perturbation approach to
problem. A transformation to a system of fast and slow variab
can be accomplished by making the change of variables as

q15y, q25S x
u D , p15FN , and p25q2 .

Use ~19! and ~20! to nondimensionalize the state variables with

D15d1 , D25S L 0

0 1D , and e5
d1

L
.

Let the characteristic massDM5m, the mass of the rigid body
The standard singular perturbation form of the planar rigid-bo
system with one sliding contact is given by

5
Aey85S y2

A~x!l̄N~y,e!1B~x!
D

x85S x2

msl̄N~y,e!1F̄x

mL2

I
~ms sinx1,22cosx1,2!l̄N~y,e!1F̄u

D
(30)

where

l̄N~y,e!5

f N~2eLy1!1gNS 2eLy1 ,2
eL

T
y2D

mL

T2

>0,

A~x!511
mL2

I
cosx1,2~cosx1,22ms sinx1,2!,

(31)

B~x!5x2,2
2 sinx1,22F̄u cosx1,21F̄y ,

F̄x5
Fx

mL

T2

, F̄y5
Fy

mL

T2

, and F̄u5
Fu

I

T2

.

Note that the symbolxi , j refers to thej th component of the vecto
xi . By following through the same derivations given by Eq
~21!–~25! in Section 4, the linearized boundary layer model
~30! can be obtained as

z92A~x0!S ]l̄N~y,0!

]y2
D U

y5y0~x0!

z82A~x0!

3S ]l̄N~y,0!

]y1
D U

y5y0~x0!

z50, (32)

wherey0(x) is a solution of the algebraic equations obtained
setting e50 in ~30!, and x0( t̄ ) is the solution of the reduced
system of~30! corresponding toy0 .

In a general viscoelastic model, it is reasonable to assume
l̄N is a monotonically decreasing function with respect toy1 and
y2 . With this assumption, ifA(x0,0) is positive, the boundary
layer system~25! is stable, and the stability of the solution for th
Transactions of the ASME
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singular perturbation problem~21! is guaranteed if all other con
ditions in Theorem 4.1 are satisfied. In a single point sliding c
tact problem, the rigid-body LCP formulation~29! has a unique
solution if and only ifA(x0,0) is positive. The above conclusio
can be summarized into the following theorem.
THEOREM 5.1 For a planar rigid body with a single sliding con
tact described by (1) and (27), the solution obtained from
compliant contact model converges to that obtained from
rigid-body model if and only if there exists a unique solution
the rigid body LCP formulation (29). This result is independent
the compliant contact models as long as the monotonicity co
tion, 2]l̄N(y(t),0)/]y1,2.0, is satisfied.

As examples, we show that the stability results are the same
both the Kelvin-Voigt and the Hunt-Crossley models. From E
~10! and the expression in~31!, the dimensionless normal conta
force for Kelvin-Voigt model can be written as

l̄N~y,e!5l̄N~y!52K̄y12C̄y2 . (33)

where the nondimensional stiffness and the damping are defi
as

K̄5
K

1

eL

mL

T2

.0 and C̄5
C

1

AeL/T

mL

T2

.0. (34)

The boundary layer system is obtained as

z91A~x0!C̄z81A~x0!K̄z50. (35)

For Hunt-Crossley model, the normal contact force can be
pressed as

l̄N~y,e!5l̄N~y!5K̄~2y1!b2āK̄~2y1!by2 , (36)

where

K̄5
K

1

~eL !b

mL

T2

.0 and ā5
3

2

a

1

AeL/T

.0. (37)

The linearized boundary layer system for Hunt-Crossley mode
given by

z91A~x0!āK̄~2y1!buy5y0~x0!z81A~x0!bK̄~2y1!b21uy5y0~x0!z

50. (38)

Sincey1<0 for any active constraint, it is clear that the stab
ity of the boundary layer dynamics, described by either~35! or
~38!, depends entirely on the value ofA(x0). Thus, independen
of the choice of contact model,A(x0) may used to test contac
force stability in those situations where the LCP tells us that
contact is maintained. A summary of the results is given in Ta

Table 1 LCP and stability results for one sliding contact „C
Äcontact, NCÄno contact, NSÄno solution, RB
Ärigid-body model, CCÄcompliant contact model; * indicates
that the stability result comes from the fact that the noncontact
solutions „free falling … are always stable …

Conditions Solutions Stability Preferred Model

A.0 B>0 NC stable* RB
A.0 B,0 C stable RB
A50 B.0 NC stable* RB
A50 B50 ` solns. - CC
A50 B,0 NS N/A CC
A,0 B>0 C unstable discard

NC stable* RB
A,0 B,0 NS N/A CC
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1. For the contact maintaining solutions, the result of the singu
perturbation analysis states that stability only occurs where
quantity A in the LCP formulation is positive~P matrix!. If the
LCP reports an unique solution, we use the rigid-body mode
simulate the dynamic motion. For the case when the LCP has
solutions (A,0,B>0), we can still use the rigid-body mode
since the stability analysis shows a unique stable solution.

5.2 Rolling Contact. The rigid-body dynamics can onc
again be formulated as an LCP with the help of surplus and s
variables~@7#!. The singular perturbation analysis proceeds in e
actly the same way as in the previous section. The following i
partition of the generalized coordinates for the rolling case:

q15S y
xD , q25u, p15S FN

FT
D , and p25q2 .

The linearized boundary layer model for this case is given by

z92A~x0!S ]l̄~y,0!

]y2
D U

y5y0~x0!

z82A~x0!S ]l̄~y,0!

]y1
D U

y5y0~x0!

z

50231 , (39)

where

l̄5~ l̄NR
T l̄TR

T !T,

A~x!5S 11
mL2

I
cos2 x1 2

mL2

I
sinx1 cosx1

2
mL2

I
sinx1 cosx1 11

mL2

I
sin2 x1

D ,

B~x!5S F̄y2F̄u cosx11x2
2 sinx1

F̄x1F̄u sinx11x2
2 cosx1

D . (40)

In the above system,A(x0) is symmetric, and its eigenvalue
are given bya151, a2511mL2/I which are positive real num-
bers. Also ifl̄ is a monotonically decreasing function with respe
to y, both 2]l̄(y0,0)/]y1 and 2]l̄(y0,0)/]y2 are diagonal ma-
trices with positive entries. In this situation, the stability of th
boundary layer system~39! follows from the Routh-Hurwitz cri-
terion. The reason is that for rolling constraints, the contact mo
corresponds instantaneously to a frictionless~no dissipation! com-
plaint pin joint. Viewed in this context, the contact forces corr
spond to the joint constraint forces. It is not surprising that, in
rigid-body limit, these forces are always stable. In contrast,
singular perturbation analysis of sliding included the depende
of tangential friction force on normal force. This dependence p
duced the potential for instability during sliding. Since the LC
and singular perturbation analyses for sliding both included
dependence, it was possible in Theorem 5.1 to relate the L
existence and uniqueness results to the singular perturbation
bility result.

There are three possible solutions for the LCP formulation o
system with a rolling contact:~a! breaking contact,~b! continued
rolling, and ~c! transition to sliding. The conditions of Theorem
4.1 for use of the rigid-body model include continuity and diffe
entiability of the tangential contact forces. These conditions
not met during~a! or ~c! because the contact forces need only
C0 continuous at a transition. Therefore, we cannot derive a re
similar to Theorem 5.1 for rolling contacts. It is possible, ho
ever, to state the more conservative result:
THEOREM 5.2 For a planar rigid-body with a single rolling con-
tact described by (1) and (28), the solution obtained from
compliant contact model converges to that obtained from
rigid-body model whenever the LCP formulation yields a uniq
JANUARY 2001, Vol. 68 Õ 123
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solution corresponding to continued rolling. This result is ind
pendent of the compliant contact models as long as the mon
nicity condition ofl is satisfied.

5.3 Extensions. In the treatment thus far, we considered t
dynamics of a single rigid body in which the unilateral constrai
were due to one contact~sliding or rolling! with a second fixed
rigid body. When we consider multiple planar rigid bodies w
bilateral constraints, but only one contact, a similar result can
derived. In such a case, the dynamics formulations in the Ca
sian space and the constraints can still be described by~1! and
~27!, ~28!, if the operational space inertia matrix,M, exists. The
only differences are that the inertia matrix, if it exists, is no long
diagonal but symmetric and still positive definite, andh(q,q̇) is
no longer zero. But these differences will not affect the proper
of the A matrix in the boundary layer systems~32! and ~39!.
Consequently, the basic ideas developed in this section are
valid, and the main results are applicable to any mechanical
tem in which the unilateral constraints are due to a single cont

6 Results From Experiments and Simulations
In this section, we compare the results of numerical simulati

with experimental observations. In the experiments, an alumin
rod with spherical ends is released from rest, while contactin
flat, rough, fixed surface, with different initial positions. We us
the OPTOTRAK-3020~Northern Digital, Inc.!, a noncontact
three-dimensional motion measurement system with an accu
better than 0.1 mm in each coordinate direction and a tracking
can be as high as 1000Hz. The experimental setup is show
Fig. 3.

The numerical simulation is based on the dynamics given
Eqs. ~1! and ~27!. The length and diameter of the tested rod a
0.468 m and 0.00948 m, respectively. The mass is 0.088 kg.
compliant model used in the simulations is the Hunt-Cross
model expressed by Eqs.~36!–~37!. The only unknown paramete
in the equations is the coefficient of friction. The coefficient
friction for the simulation is chosen to be the value that b
approximates experimentally observed trajectories in a le
squares sense.

6.1 Case 1: The LCP has a Unique Solution. We first con-
sider an experiment in which our rigid-body LCP predicts
unique solution throughout the duration of the experiment. T
initial conditions of the rod areu542.3 deg,u̇50, andẋ5 ẏ50.
The external force areFx50, Fy52mg, andMz50. The related
parameters used in Hunt-Crossley model areK̄51, ā51, andb
52. The trajectory corresponds to a condition of sliding where
contact point slides to the left. The sliding velocity decreases,
124 Õ Vol. 68, JANUARY 2001
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at approximately 0.205 sec, the sliding velocity changes direc
so that the contact point slides to the right. In Fig. 4, we show
experimentally observed trajectory and the simulation results
~a! the trajectory of contact point,~b! the normal contact force
and ~c! the tangential contact force. The simulation results
provided for the rigid-body LCP solution and for the complia
contact model for a range ofe values. The coefficient of friction
used in the simulation ism50.27.

The first thing to note is that there is a close agreement betw
the experimental trajectory and the rigid-body LCP solution w
the same initial condition as expected. The second issue to fo
on is the set of results from the simulation of the compliant co
tact model. Even though the initial condition for the complia
contact model solution is different from the equilibrium solutio
it quickly converges to the equilibrium solution. The convergen
in an absolute time scale is faster ase becomes smaller. This is
also evident at the transition from reverse to forward slidin
which includes a very brief period of rolling. The discontinuity o
the rigid-body dynamic model with Coulomb friction is seen
the contact force variation in Figs. 4~b! and 4~c!. However, the
compliant contact model yields a continuous solution that can
made to approach the solution of the LCP model arbitra
closely by lettinge assume very small values.

6.2 Case 2: The LCP has Two Solutions. In Section 5 we
showed that, in cases when the LCP formulation for sliding c
tact has two solutions, the model of the boundary layer sys
~32! predicts that the contact maintaining solution is unstable
such cases, at any instant, the LCP predicts two possible
comes. While it is possible to simulate either outcome using
compliant contact model, a simulation based on the rigid-bo
model involves making a choice at each such point.

An ideal uniform rod withL51 m andm51 kg is used in the
simulation. The initial condition of the rod areu570 deg,u̇50,
and ẋ5 ẏ50. The external forces areFx50, Fy52mg, andMz
521 Nm. The coefficient of friction ism51. The compliant con-
tact model used in the simulation is the Hunt-Crossley model w
the same parameters as in Case 1. Because this case can o
achieved at carefully chosen values of external forces or in
velocities, we were unable to reproduce this case experiment

In Fig. 5, we show the results of the rigid-body solution assu
ing that ~a! the contact breaks att50—the first solution; and~b!
the contact is maintained att50—the second solution, and a
future time instants as well. The main point to be observed in F
5 is the performance of the compliant contact model. As shown
Fig. 5~b!, even when started from the condition of maintainin
contact, the solution for the compliant contact model expon
tially converges to the stable solution of no contact. The rate
Fig. 3 The experimental setup
Transactions of the ASME
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Fig. 4 Case 1: The LCP has a unique solution and the compliant contact model solution converges to
the rigid-body model solution as the perturbation parameter e goes to 0
o

the
the

s to
ny
convergence increases with decreasinge. In contrast, at t
50.163 sec, the rigid-body solution corresponding to maintain
contact reaches a state where the LCP has a unique solution
responding to contact separation. This can be seen in Fig. 5~b! as
the discontinuous drop in normal contact force. The fact that
compliant model solution converges to the stable rigid-bo
model solution indicates that in cases when LCP has two s
pplied Mechanics
ing
cor-

the
dy
lu-

tions, one stable and one unstable, we can always choose
stable solution and use the rigid body model to continue
simulation.

7 Friction Models
There are many types of friction phenomena and equation

model them. Coulomb friction is one of the simplest and in ma
JANUARY 2001, Vol. 68 Õ 125
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Fig. 5 Case 2: The LCP has two solutions, maintaining contact „unstable … and separation „stable …. If
the compliant model solution is started with the unstable maintaining contact solution, it quickly con-
verges to the separation solution „stable ….
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situations can adequately predict the system’s behavior. Neve
less, its mathematical properties complicate dynamic simula
for both rigid-body and compliant contact models. The difficulti
caused by Coulomb’s friction model in rigid-body dynamic sim
lation are due to the following issues:~1! the friction force is not
smooth during rolling-sliding transitions; and~2! during rolling,
the friction force cannot be directly determined from the st
variables. When solving the forward dynamic problem, these
issues can either increase the complexity of the system or c
analytical difficulties. Specifically the rolling and sliding con
straints need to be handled differently in the rigid-body formu
tions ~@7#!. This is also the main reason that our stability results
Section 4 are not applicable to transitions from rolling to slidin
Furthermore, cases arise in which a unique solution to the forw
dynamics problem does not exist.

Since these difficulties are due to the Coulomb model, it
possible to overcome them by substituting a model with the r
uisite mathematical properties. In fact, nonclassical friction la
which are nonlinear and nonlocal have been found to be supe
to pointwise Coulomb models from both a phenomenological
a computational viewpoint~@22#!. A few of these models were
developed specifically for rigid-body dynamics. For example
discontinuous model that extends the Coulomb’s stiction z
from zero velocity to a small neighborhood of zero velocity
68, JANUARY 2001
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suggested in~@23#!. Many others~@12#!, including Dahl’s model
and the bristle model, can be considered to be extensions o
compliant contact model.

Our interest is in the simplest friction law that approximat
Coulomb friction and is a continuously differentiable function
the system states. Such a model would allow us to formulate
dynamics using either rigid-body models or compliant cont

Fig. 6 A smooth, nonlinear friction law with two parameters g,
a characteristic speed, and m, the coefficient of friction
Transactions of the ASME
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Fig. 7 Results with the smooth nonlinear friction law „gÄ10À3
…. The transition from reverse sliding to

rolling to forward sliding at tÄ0.205 sec is characterized by a smooth variation of contact forces.
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models while improving the performance of both. A friction la
with these properties is shown in Fig. 6. It has a one-to-one
respondence between the friction forcelT and the relative tangen
tial velocity ḞT . The small parameterg defines the extent of the
‘‘rolling’’ regime: ḞTP@2g,g#. By letting g tend to zero, we
can obtain an arbitrarily close approximation to Coulomb’s la
albeit with some sliding in the ‘‘rolling’’ regime. Using this fric-
tion law with the rigid-body dynamic model expressed in Eq
~1!–~2!, we no longer need to differentiate between rolling a
sliding contacts. Instead, the Jacobian matrix (Fq) in Eq. ~3! al-
ways takes the form

Fq
T5FFNq

T 2FTq

T diagS m tanhS ḞT

g
D D G . (41)

This gives rise to a unified LCP formulation that works for bo
rolling and sliding constraints. The smooth friction law can a
improve numerical performance of the compliant contact mod
since we no longer need the deformation state vector,dT , to com-
pute the tangential force which is uniquely defined by the norm
contact force and the relative velocity.

lT,i52m tanhS ḞT,i

g
D lN,i (42)

As is the case with rigid-body dynamics and Coulomb’s la
the LCP formulation with the smooth friction law will have situ
pplied Mechanics
or-

w,

s.
d

th
so
el,

al

w,
-

ations with no solution or multiple solutions. And, as before, t
compliant contact model given by Eqs.~12! and~42! resolves the
difficulties with uniqueness and existence. Since the stab
analysis in Section 4 can be easily applied to this new frictio
model without worrying about transitions between rolling a
sliding contacts, Theorem 5.1 can be directly extended to
planar mechanical system with a single rolling or sliding conta
Because the rolling constraint is now replaced by ‘‘microsliding
with the tangential contact velocity smaller thang, the proof fol-
lows exactly the same lines of the proof in Section 5.1.

To illustrate the effect of the smooth friction law, we consid
the same situation shown in Fig. 4~Case 1 in Section 6!. Recall
the transition from reverse sliding to rolling to forward sliding
Fig. 4 att50.205 sec. Figure 7 shows the results of the simulat
with the smooth friction law with the same initial conditions. Th
rigid-body model predicts discontinuities in the contact forc
However, the compliant contact predicts a smooth transition fr
sliding to sticking~relative velocity less than the thresholdg! to
sliding in the opposite direction.

The main disadvantage of the nonlinear friction law is due
the fact a static friction force can only be maintained throu
‘‘creep’’ in the tangential direction. While the ‘‘creep’’ rate is les
than g, and g can be set to a very small value, it is not a ve
attractive solution because it has the adverse effect of making
system of ODEs stiff. There is a natural tradeoff that must
considered in selecting the parameterg.
JANUARY 2001, Vol. 68 Õ 127
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8 Concluding Remarks
When rigid-body models are used in conjunction with Coulom

friction for dynamic simulation of systems with frictional con
tacts, there may be situations in which there are no solution
multiple solutions for the contact forces and the accelerations
this paper, we describe a contact model that models the s
compliance in the normal and tangential directions. We show
this compliant contact model, when used with the rigid-body d
namic equations of motion, always yields a unique solution for
accelerations and the forces. While this model is superior to
traditional rigid-body model in terms of accuracy and robustne
it is also more complex and requires a larger number of par
eters. Therefore, it is appealing to use rigid-body models, wh
ever concerns of uniqueness and existence do not arise.

The main contribution of this paper is the use of singular p
turbation theory to establish conditions under which solutio
from the rigid-body model are stable, or in other words, con
tions in which the compliant contact model solution converg
exponentially to the rigid-body model solution. In situations wh
rigid-body LCP analysis reveals multiple solutions, stabil
analysis can resolve the ambiguity. We can simply discard
unstable solutions and retain the stable one. The stability ana
shows when it is essential to pursue the more sophisticated c
pliant contact model, and when it is satisfactory to neglect the
dynamics. The basic issues are illustrated with the help o
simple example with one contact that may be rolling, sliding,
separating. The case of rolling contacts poses an additional d
culty because of the fact the tangential forces obtained
Coulomb-like frictional laws, even when used with complia
contact models, are not smooth functions of the state. The se
main contribution of the paper is the result that a smooth non
ear friction law, inspired by Oden and Pires’ nonlinear frictio
law ~@22#!, overcomes this difficulty. We show that in the case
planar mechanical systems with one contact, there are at mos
solutions, and there is only one stable solution.

The basic ideas of this paper are applicable to any situa
with frictional contacts. However, in order for the rigid-bod
model, and therefore the perturbation analysis to be applicable
are limited to planar problems with three or less independent c
straints and spatial problems with six or less independent c
straints. Note the compliant contact model can always be app
without such limitations. Since not all of the constraints of t
physical system are embodied in the rigid-body mathemat
model, a study of the stability of these solutions based solely
the structure of the LCP itself is not justified. Existence a
uniqueness problems suggest the inapplicability of the rigid-b
model altogether and not simply uncertainty in or sensitivity
model parameter values.

Our future work addresses incorporating stability analysis a
diagnostic tool in real-time simulation where it is prudent to che
for stability and warn the user in unstable regimes.
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This paper presents an extension of the correspondence prin
(as applied to homogeneous viscoelastic solids) to nonhom
neous viscoelastic solids under the assumption that the relaxa
(or creep) moduli be separable functions in space and time. A
models for graded viscoelastic materials are presented and
cussed. The revisited correspondence principle extends to spe
instances of thermoviscoelasticity and fracture of functiona
graded materials. @DOI: 10.1115/1.1331286#

1 Introduction
Functionally graded materials~FGMs! are special composite

usually made from both ceramics and metals. The ceramic in
FGM offers thermal barrier effects and protects the metal fr
corrosion and oxidation. The FGM is toughened and strengthe
by the metallic composition.The composition and the volum
fraction of the constituents vary gradually, giving a nonunifor
microstructure with continuously graded macroproperties. Vari-
ous thermomechanical problems of FGMs have been studied
example, constitutive modeling~@1#!, fracture behavior~@2–4#!,
thermal stresses~@5,6#!, strain gradient effects~@7#!, plate bending
problems~@8#!, higher order theory~@9#!, and so on. Comprehen

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Ja
18, 2000; final revision, June 14, 2000. Associate Technical Editor: M.-J. Pinde
Copyright © 2Journal of Applied Mechanics
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sive reviews of ongoing FGM research may be found in the art
by Hirai @10# and the book by Suresh and Mortensen@11#.

One of the primary application areas of FGMs is hig
temperature technology. Materials will exhibit creep and str
relaxation behavior at high temperatures. Viscoelasticity offer
basis for the study of phenomenological behavior of creep
stress relaxation. The elastic-viscoelastic correspondence prin
~or elastic-viscoelastic analogy! is probably one of the most usefu
tools in viscoelasticity because the Laplace transform of the
coelastic solution can be directly obtained from the correspond
elastic solution. In the present work, the correspondence princ
is revisited in the context of viscoelastic FGMs.

In this paper, the basic equations of viscoelasticity in FGMs
formulated. The correspondence principle is established fo
class of FGMs where the relaxation moduli for shear and dila
tion m(x,t) and K(x,t) take the formsm(x,t)5m0m̃(x) f (t) and
K(x,t)5K0K̃(x)g(t), respectively, wherem0 andK0 are material
constants,m̃(x), K̃(x), f (t), andg(t) are nondimensional func
tions, andx5(x1 ,x2 ,x3). The correspondence principle stat
that the Laplace transforms of the nonhomogeneous viscoel
variables can be obtained from the nonhomogeneous elastic
ables by replacingm0 and K0 with m0p f̄(p) and K0pḡ(p), re-
spectively, wheref̄ (p) and ḡ(p) are the Laplace transforms o
f (t) and g(t), respectively, andp is the transform variable. The
final nonhomogeneous viscoelastic solution is realized by inv
ing the transformed solution. The above correspondence princ
can also be extended to specific instances of thermoviscoelas
and fracture of FGMs.

2 Basic Equations
The basic equations of quasi-static viscoelasticity of FGMs

the equilibrium equation

s i j , j50, (1)

the strain-displacement relationship

e i j 5
1

2
~ui , j1uj ,i !, (2)

and the viscoelastic constitutive law

si j 52E
0

t

m~x,t2t!
dei j

dt
dt, skk53E

0

t

K~x,t2t!
dekk

dt
dt,

(3)

in which s i j are stresses,e i j are strains,si j andei j are deviatoric
components of stress and strain tensors given by

n.
ra.
001 by ASME JANUARY 2001, Vol. 68 Õ 129
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si j 5s i j 2
1

3
skkd i j , ei j 5e i j 2

1

3
ekkd i j , (4)

whereui are displacements,d i j is the Kronecker delta,m(x,t) and
K(x,t) are appropriate relaxation functions,t is time, and the
Latin indices have the range 1, 2, 3 with repeated indices imply
the summation convention. Note that the relaxation functions a
depend on spatial positions, whereas in homogeneous visco
ticity, they are only functions of time, i.e.,m[m(t) and K
[K(t) ~@12#!.

For a boundary value problem, the boundary conditions
given by

s i j nj5Si , on Bs , (5)

ui5D i , on Bu , (6)

wherenj are the components of the unit outward normal to
boundary of the body,Si are the tractions prescribed onBs , and
D i are the prescribed displacements onBu . The parts of the
boundaryBs andBu are required to remain constant with time

3 Correspondence Principle
In general, the correspondence principle of homogeneous

coelasticity may not hold for FGMs. To circumvent this proble
we consider a class of FGMs in which the relaxation functio
have the following general form:

m~x,t !5m0m̃~x! f ~ t !,
(7)

K~x,t !5K0K̃~x!g~ t !,

wherem0 and K0 are material constants, andm̃(x), K̃(x), f (t),
andg(t) are nondimensional functions. The constitutive law~3! is
then reduced to

si j 52m0m̃~x! E
0

t

f ~ t2t!
dei j

dt
dt,

(8)

skk53K0K̃~x!E
0

t

g~ t2t!
dekk

dt
dt.

By assuming the material initially at rest, the Laplace transfor
of the basic Eqs.~1!, ~2!, ~8!, and the boundary conditions~5! and
~6! are obtained as

s̄ i j , j50, (9)

ē i j 5
1

2
~ ūi , j1ū j ,i !, (10)

s̄i j 52m0m̃~x!p f̄~p!ēi j , (11)

s̄kk53K0K̃~x!pḡ~p!ēkk , (12)

s̄ i j nj5S̄i , on Bs , (13)

ūi5D̄i , on Bu , (14)

where a bar over a variable represents its Laplace transform,
p is the transform variable. Thus

s̄ i j 5E
0

`

s i j exp~2pt!dt, ē i j 5E
0

`

e i j exp~2pt!dt,

ūi5E
0

`

ui exp~2pt!dt, f̄ ~p!5E
0

`

f ~ t !exp~2pt!dt, (15)

ḡ~p!5E
0

`

g~ t !exp~2pt!dt.

It is seen that the set of Eqs.~9!–~12!, and conditions~13! and
~14! have a form identical to those of nonhomogeneous elasti
130 Õ Vol. 68, JANUARY 2001
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with the shear modulusm5m0m̃(x) and the bulk modulusK

5K0K̃(x) provided that the transformed viscoelastic variables

associated with the corresponding elastic variables andm0p f̄(p)
andK0pḡ(p) are associated withm0 andK0 , respectively. There-
fore, thecorrespondence principlein homogeneous viscoelasticit
still holds for the FGM with the material properties given in E
~7!, i.e., the Laplace transformed nonhomogeneous viscoela
solution can be obtained directly from the solution of the cor
sponding nonhomogeneous elastic problem by replacingm0 and

K0 with m0p f̄(p) and K0pḡ(p), respectively. The final solution is
realized upon inverting the transformed solution.

4 Some Models for Graded Viscoelastic Materials
Among the various models for graded viscoelastic materials

the standard linear soliddefined by

m~x,t !5m`~x!1@me~x!2m`~x!#expF2
t

tm~x!G ,
(16)

K~x,t !5K`~x!1@Ke~x!2K`~x!#expF2
t

tK~x!G ,
the power-law model

m~x,t !5me~x!F tm~x!

t Gq

, K~x,t !5Ke~x!F tK~x!

t Gq

, 0,q,1,

(17)

and theMaxwell material

m~x,t !5me~x!expF2
t

tm~x!G , K~x,t !5Ke~x!expF2
t

tK~x!G ,
(18)

wheretm(x) and tK(x) are the relaxation times in shear and bu
moduli, respectively, andq is a material constant. The discussio
below indicates the revisions needed in the general models so
the correspondence principle holds.

• Standard Linear Solid~16!. If the relaxation timestm and tK
are constant, ifme(x) andm`(x) have the same functional form
and if Ke(x) andK`(x) have the same functional form, then th
standard linear solid satisfies assumption~7!.

• Power Law Model~17!. It is seen that if the relaxation time
tm andtK are independent of spatial position, then the assump
~7! is readily satisfied. Moreover, even if the relaxation tim
depend on the spatial position in~17!, the correspondence prin
ciple may still be applied with some revision, which consists
taking the corresponding nonhomogeneous elastic material
the following properties:

m5me~x!@ tm~x!#q, K5Ke~x!@ tK~x!#q, (19)

instead ofm5me(x) andK5Ke(x).
• Maxwell Material ~18!. If the relaxation timestm and tK are

independent of spatial position, the assumption~7! is promptly
satisfied.

5 Thermoviscoelastic Problem
The basic equations of thermoviscoelasticity of FGMs are id

tical to those of viscoelasticity except the constitutive law. T
constitutive relation for thermoviscoelastic FGMs is given by

si j 52E
0

t

m~x,t2t!
dei j

dt
dt,

(20)

skk53E
0

t

K~x,t2t!
d@ekk2a~x!T#

dt
dt,

whereT is the temperature anda~x! is the coefficient of thermal
expansion. Herea is assumed to be time-independent. By app
Transactions of the ASME
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form of the relaxation functions given in~7!, we obtain

s̄i j 52m0m̃~x!p f̄~p!ēi j , s̄kk53K0K̃~x!pḡ~p!~ ēkk2aT̄!,
(21)

while the constitutive relation of the nonhomogeneous th
moelasticity may be expressed as

sij52m0m̃~x!ei j , skk53K0K̃~x!~ekk2aT!. (22)

Thus it can be seen that the correspondence principle still ho

6 A Path-Independent Integral
The J-integral ~@13#! has been extended to certain classes

elastic materials with varying Young’s modulus in the crack-li
direction by Honein and Herrmann@14#. Here, a J-like path-
independent integral is presented for characterizing fracture
nonhomogeneous viscous materials.

Consider the shear modulus with the specific functional for

m~x1 ,x2 ,t !5m0~x2!exp~bx1! f ~ t ! (23)

wherem0(x2) is an arbitrary function ofx2 andb is an arbitrary
material constant. Note that~23! has the form given in~7!. More-
over, the Poisson’s ratio is assumed to be independent ofx1 . The
proposed integral to characterize crack growth in such graded
terial undergoing creep is

Ce* 5E
G
F S Ẇn12s i j nj

]u̇i

]x1
D2

b

2
s i j nj u̇i Gds (24)

whereG is a contour enclosing the crack tip,n1 is the first com-
ponent of the unit outward normal toG, s i j nj5Si are the compo-
nents of tractions alongG, ds is an infinitesimal length elemen
along the contourG, andẆ is the stress work rate~power! density
defined as

Ẇ5E
0

ė kl
s i j dė i j . (25)

The integral~24! has been obtained by replacing strain with stra
rates, and displacement with displacement rates in the corresp
ing Je-integral ~@14#! for nonhomogeneous elastic materials.
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The integral of the term within parentheses in~24! is the so-
called C* integral ~e.g., @15#! which is valid for homogeneous
viscous materials undergoing steady-state creep. The extra te
~24!, which appears outside the parentheses, is due to the mod
variation. Equation~24! can be seen as an extension of theC*
integral for nonhomogeneous viscous media. TheC* integral is a
special case of theJv-integral derived by Schapery@16# by means
of correspondence principle arguments. The latter integral
counts for a wide range of time-dependent material behavior,
includes viscous creep as special case.

7 A Simple Example
As an example of application, we consider an infinite strip

width h occupying the region 0<x1<h, 2`,x2,`, 2`,x3
,`. It is assumed that the strip deforms in thex1–x2 plane under
the plane-strain conditions. A ‘‘fixed grip’’ loading condition i
considered, i.e.,e22(x1 ,6`)5e0 , where e0 is a constant. The
nonvanishing stresss22 in a nonhomogeneous elastic mater
with the Young’s modulusE5Ee(x1) and the Poisson’s ration
5ne(x1) is given by~@4#!

s225
Ee~x1!e0

12ne
2~x1!

5
4e0me~x1!@3Ke~x1!1me~x1!#

3Ke~x1!14me~x1!
, (26)

where the following relations are used:

Ee5
9Keme

3Ke1me
, ne5

3Ke22me

2~3Ke1me!
. (27)

According to the correspondence principle, the Laplace transf
of the stress in a viscoelastic FGM with the shearing and dila
tional relaxation functionsm5me(x1) f (t) andK5Ke(x1)g(t) is
given by

s̄225
4e0me~x1! f̄ ~p!@3Ke~x1!ḡ~p!1me~x1! f̄ ~p!#

3Ke~x1!ḡ~p!14me~x1! f̄ ~p!
. (28)

For the Maxwell material~18! with constant relaxation timestm
and tK , the above transformed stress becomes
s̄225
@4e0me~x1!/~p11/tm!#@3Ke~x1!/~p11/tK!1me~x1!/~p11/tm!#

3Ke~x1!/~p11/tK!14me~x1!/~p11/tm!
. (29)
us
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By inverting ~29!, we get the stress in the time domain as follow

s225H 9Ke~x1!

4me~x1!13Ke~x1!
expF2

4me~x1!tm /tK13Ke~x1!

4m2~x1!13Ke~x1!

t

tm
G

1expS 2
t

tm
D J me~x1!e0 . (30)

By letting t→01, the nonhomogeneous elastic solution~26! is
recovered.

8 Conclusions
The correspondence principle is revisited and established f

class of FGMs where the relaxation functions for shear and d
tation take separable forms in space and time, i.e.,G1(x,t)/2
5m(x,t)5m0m̃(x) f (t) andG2(x,t)/35K(x,t)5K0K̃(x)g(t), re-
spectively. The correspondence principle states that the Lap
transforms of the nonhomogeneous viscoelastic variables ca
obtained from the nonhomogeneous elastic variables by repla
m0 andK0 with m0p f̄(p) andK0pḡ(p), respectively, wheref̄ (p)
s:

r a
ila-

lace
be

cing

and ḡ(p) are the Laplace transforms off (t) and g(t), respec-
tively, andp is the transform variable. The final nonhomogeneo
viscoelastic solution is realized by inverting the transformed so
tion. Equivalently, if the creep functionsJ1(x,t) andJ2(x,t) have
separable forms in space and time, then the correspondence
ciple ~as employed here! is also directly applicable.
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On Some Anomalies in Lame´’s
Solutions for Elastic Solids With Holes

G. B. Sinclair
Department of Mechanical Engineering, Louisiana State
University, Baton Rouge, LA 70803-6413

G. Meda
Science and Technology Division, Corning, Inc., Cornin
NY 14831-0001

Elastic solids with holes under remote tension are reconside
When hole dimensions are shrunk so that holes disappear, ano
lies occur in the classical elasticity solutions of Lame´. By intro-
ducing cohesive laws on hole surfaces as they shrink, th
anomalies may be removed.@DOI: 10.1115/1.1331285#

1 The Issue
Sketched in Fig. 1 is the Lame´ problem of an infinite elastic

plate, weakened by a circular hole of radiusa, under a uniform
remote tensions0 . In cylindrical polar coordinates~Fig. 1!, the
stresses in its classical solution are given in Lame´ @1# and are

H s r

su
J 5s0S 1H 2

1J a2

r 2 D , (1)

for a<r ,`, 0<u,2p. The companion shear stress compon
is zero by virtue of the axisymmetry of the configuration. Th

1Swain @5#, pp. 121,122, does note a similar anomalous result in the class
elasticity solution for an infinite plate with a circular hold underuniaxial far-field
tension.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received and accepted by the ASME Applied Mechan
Division, Mar. 27, 2000; final revision, Aug. 8, 2000. Associate Technical Editor
R. Barber.
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such a stress field is indeed a valid solution within classical e
ticity can be verified by direct substitution into the governing fie
equations and the boundary conditions.

Settingr 5a in su of ~1! reveals a stress concentration fact
~SCF! of 2 at the edge of the hole. Consider what happens to
concentration factor ifa→0 and the hole disappears. The SCF
independent ofa, so it remains equal to 2 even whena→0. This
is inconsistent with what one would expect physically, name
that the limita→0 should be the same as when the plate is wh
without a hole and has no stress concentration.

The same sort of anomalous result occurs for an elastic s
with a spherical hole. Then Lame´ @1# has that the SCF is 3/2
independent of the hole radius. Again, therefore, there is a st
concentration when the radius goes to zero, inconsistent w
physical expectations.

These anomalous results are passed by without commen
Lamé @1#. While they have no doubt been noted by elastica
since, their existence may well not be as widely appreciated to
as it could be. They are not mentioned in classical texts wh
include the Lame´ solutions~e.g., Love@2#, Art. 100, 98; Muskhe-
lishvili @3#, Art. 56a; Timoshenko and Goodier@4#, Art. 28, 136!.
Further, we could not find them discussed in any other stand
elasticity texts.1 Nevertheless they bear explaining.

Mathematically, there is a clear distinction between solids w
holes with radii tending to zero and solids without holes. Wh
a→0 in either of Lame´’s hole problems, the boundary conditio
s r50 holds atr 50. In contrast, for a plate without a hole, th
field equations hold atr 50. Such mathematical distinctions, how
ever, fall short of a fully satisfactory physical explanation.

We have been offered physical explanations of the followi
genre by a number of people: ‘‘Physically speaking, one expla
this nonuniform behavior as the presence of a stress concentra
in an imperfect body such as at the boundary of a small entrai
cavity in a casting.’’ To examine the physical appropriateness
such explanations, we consider a further limit of~1! as a→0.
Specifically, we takesu of ~1! at u50, denote it byŝy , and set
r 5la, l>1. Then

ŝy5s0~11l22! as a→0. (2)

Of course, asa→0, r 5la→0 for all l>1. Hence with this
model of an imperfection, asa tends to zero we can get any valu
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Fig. 1 Plate with hole under remote tension
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of ŝy at r 50 betweens0 and 2s0 as the imperfection’s stres
concentration.2 This unsatisfactory situation is compounded
the ambiguity of which stress componentsx or sy is what in the
limit as a→0 for differentu. All told, such physical explanation
are quite superficial. Here, then, we seek to furnish a physic
sensible resolution of the differences between Lame´’s solutions
for plates with holes and responses for whole plates.

2 A Resolution
What is missing in the classical statement of Lame´’s hole prob-

lems is the recognition that atoms or molecules on opposite s
of any hole must start to interact with each other as the h
closes. This interaction producescohesive stresseson the hole
walls. Here we model the action of these cohesive stresses.

There are three key elements in our simple models. First,
introduce cohesive stresses via cohesive stress-separation la
hole boundaries. This simplifies the incorporation of the unde
ing solid-state physics and reduces the analysis of our mode
involving just continuum mechanics. Such an approach was
introduced in Barenblatt@6# and has seen extensive use since~Sin-
clair @7# provides a recent bibliography!. For the most part, it has
been employed in the analysis of cracks, although Levy@8,9#
treats a rigid inclusion without a crack. The implementation
cohesive stress-separation laws here could be viewed as the
of their use in Levy@8,9#.

Second, we only consider that portion of the cohesive stre
separation law near the equilibrium position. That is, we o
track the action of cohesive stresses when the hole is extrem
small. In this range, cohesive stress-separation laws can be t
as linear. Moreover, the constant of proportionality can be bac
out by insisting that the insertion of such a cohesive law wit
the continuum without any hole leaves response th
unaltered—a kind of cohesive-law patch test. For the pres
problem, this insertion is actually carried out on a circular ring
radiusR in an elastic plate with the same moduli as the origin
plate. Then such a patch test in effect accounts for the action o
the atoms external toR on all those internal, and vice vers
Again, simplification is the intent. The so-simplified treatme
does nonetheless serve to demonstrate the basic physics invo3

Third, we take our cohesive stress-separation law as acting
tween the centers of the atoms or molecules comprising the
surfaces: By symmetry, these atoms or molecules are diam
cally opposed. The consequence of this assumption is that h
close when their radii reduce to half of the equilibrium center-
center spacing of the atoms or molecules. This removes any
biguity associated witha→0.

The corresponding reformulation of Lame´’s problem for the
plate with a hole then is as follows. Throughout the plate of Fig
when a is small, we seek the axisymmetric planar stressess r ,
su , and their companion displacementur , as functions ofr, sat-
isfying the following requirements: the stress equation of equi
rium in the absence of body forces,

rs r ,r1s r2su50, (3)

for a,r ,`, 0<u,2p; the stress-displacement relations for
homogeneous and isotropic, linear elastic solid,

H s r

su
J 5mF32k

k21
U12H ur ,r

r 21ur
J G , U5ur ,r1r 21ur , (4)

2If insteadr is not fixed in terms ofa before taking the limita→0, then a state of
all-round tension obtains~see~1!!. This is a different limit, however, since under
one is moving to infinity rather than to the center of the hole.

3Insertion of an entire, nonlinear, cohesive, stress-separation law is trac
within linear elasticity because the present problems are one-dimensional. It i
appropriate, though, because the large strains incurred near the peak stres
cohesive laws really require a finite strain analysis.
Journal of Applied Mechanics
y

lly

ides
ole

we
s on

ly-
s to
rst

of
dual

ss-
ly
ely

aken
ked
in

ere
ent
of
al
f all
.
nt
ved.
be-
ole

etri-
oles
o-
am-

. 1

ib-

a

for a,r ,`, 0<u,2p, whereinU is the dilation,m is the shear
modulus andk is 324n for plane strain, (32n)/(11n) for plane
stress,n being Poisson’s ratio; the cohesive stress-separation
on the hole boundary,

s r5k~2ur12a2d! at r 5a, (5)

for 0<u,2p, whereink is the law stiffness andd is the equilib-
rium separation of the atoms or molecules comprising the pl
and the condition applying the tension at infinity,

s r5s0 as r→`, (6)

for 0<u,2p. In addition, from our cohesive-law patch test
r 5R, we haves r5k@ur(r 5R1d/2)2ur(r 5R2d/2)#, leading
to

k54m/d~k21!. (7)

This is the value of the stiffness to be used in~5! when a is
sufficiently small.

Solution of the problem in~3!–~6! is elementary and gives

H s r

su
J 5s0H 2

1J s08
a2

r 2 , ur5
1

4m Fs0r ~k21!12s08
a2

r G , (8)

where

s085s02k
2m~2a2d!1~k11!s0a

2~m1ka!
. (9)

Observe that~8! and ~9! recover Lame´’s solution ~1! whenk50,
as they should.

Now consider what happens if the hole disappears. Introduc
k of ~7! into ~9!, and takinga→d/2 to close the hole, givess08
50. Thus from~8!,

s r5su5s0 as a→d/2. (10)

Equation~10! is the physically sensible result for a plate without
hole.

A similar reformulation and analysis for the spherical ho
problem leads to

H s r

su
J 5s0H 2

11/2J s09
a3

r 3 , (11)

where

s095s02k
4m~2a2d!13~k21!s0a

2~2m1ka!
, (12)

with k being as for plane stress. Again Lame´’s solution is recov-
ered whenk50, and a state of uniform all-round tension obtai
when a→d/2 providedk is taken so that it passes the cohesiv
law patch test in spherical polar coordinates (k58m/d(3k
25)).

Implicit in both the circular and spherical hole problems trea
here is the existence of a length scale which is considerably la
than the initial radii, and which remains fixed as radii go to ze
This additional length scale can be made explicit by instead c
sidering an annular plate and a hollow ball. The same anoma
result when internal holes are shrunk to zero: They can be r
edied by a parallel introduction of cohesive laws.

It is also possible to adapt the foregoing if one actually wan
to model an imperfection. Then the fact that material on oppo
sides of the holes had once been separated can be reflected
choice of the cohesive law as material gets back together if ind
there is some impediment which modifies this law. To be tru
physically appropriate, this choice needs to be founded in so
state physics. Such an analysis is beyond the scope of the pr
note.

In sum, the boundary conditions in Lame´’s classical solutions
for elastic solids with holes are not physically appropriate wh

able
not
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J.
hole surfaces come into extremely close proximity with one
other. Cohesive stresses act under these circumstances. W
such proximities though, classical solutions are applicable.
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Thermal Stresses,by Naotake Noda, Richard B. Hetnarsk
and Yoshinobu Tanigawa. Lastran Corporation, Roches
NY, 2000. 455 pages. Price: $70.00.

REVIEWED BY J. R. BARBER 1

There are several excellent books on the subject of ther
stresses, including the classical texts by Boley and Wei
Nowacki, and Nowinski, but none of them is entirely satisfacto
for classroom use because they make few concessions to
reader and in particular do not include worked examples and
of chapter problems.Thermal Stressesby Noda, Hetnarski, and
Tanigawa aims to fill this gap. It starts from the most element
concepts of one-dimensional thermal expansion and stress, w
most students will have encountered in a first course in Mecha
of Materials. Problems and methods of gradually increasing c
plexity are then introduced, each being illustrated by several
examples and supported by suitable student assignments.

The first two chapters cover linear thermoelasticity of on
dimensional bars and Euler beams, respectively, with various t
perature distributions and mechanical loading conditions. The
damental concepts are reinforced by the discussion of a w
range of applications including composite and inhomogene
beams. Although the concepts involved in these applications
straightforward, the solutions can involve rather formidable loo
ing algebra, which may lead the less insightful student to overl
the essential simplicity of the underlying concepts. I was a
disappointed to see no reference to elastic-plastic problems in
section, since thermally induced residual stresses are an impo
branch of the subject and these one-dimensional examples pro
a convenient vehicle for their introduction to the student at
elementary level.

Chapter 3 introduces the heat conduction equation and the
boundary conditions. Problems in one dimension are solved
by separated variable methods, leading to series solutions,
then by Laplace transform methods. This methodology is fi
introduced in Cartesian coordinates and then extended to
dimensional problems in cylindrical and spherical coordinates

Chapter 4 presents an overview of the complete developme
the general equations of linear thermoelasticity, starting with eq
librium and coordinate transformation of stress components,
definition of strain components, compatibility, and statements
the governing equations in terms of stress or displacement.
particular solution of these equations is defined in terms of
thermoelastic displacement potential, and the Papkovitch-Ne
solution is introduced as the homogeneous solution, using s
rated variable solutions of the Laplace equation in Cartesian
ordinates. Appropriate results are then repeated in the cylind
and spherical coordinate systems. The chapter ends with a dis
sion of the importance of multiply connected bodies in th
moelastic problems and a derivation of the Cesaro line integr

1Professor of Mechanical Engineering and Applied Mechanics, University
Michigan, Ann Arbor, MI 48109-2125. Mem. ASME
Copyright © 2Journal of Applied Mechanics
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My impression is that this chapter will appear very indigestible
any student without a previous grounding in linear elastici
Apart from a single worked example, the derivations are presen
without a break and without much indication of how the mater
will be used. Of course, these equations will later be reduced
simpler forms for specific examples and it would obviously
inefficient to derive them separately in each case. However,
instructor will probably find it necessary to supplement the ma
rial in this chapter with more examples, if only to allow the st
dents time to catch their collective breath during the ascent.

Similar criticisms could be leveled at later chapters in the bo
where the general results are specialized to two-dimensio
~plane! problems~Chapter 5!, problems for the cylinder~Chapter
6! and the sphere~Chapter 7!, and for thin plates~Chapter 8!.
Most of these chapters contain only one or two text examples
these are concentrated near the beginning of the chapters. It
though the authors gradually forgot their stated mission in
middle of each chapter, moving to a ‘‘monograph’’ style of wri
ing. It is true that many of the later derivations in each chap
present essentially a general solution for a class of problems~for
example, a built-in rectangular plate with a prescribed tempera
distribution!, so that the solution of a particular technical proble
would merely involve the substitution of one or more given fun
tions and the evaluation of some integrals. However, in my ex
rience, these particular examples provide crucial motivation
students, particularly those with a more practical engineering p
spective. They also provide an opportunity to the author and
instructor to draw important technical conclusions. For examp
how big a temperature variation in the body might be sufficien
generate dangerously large thermal stresses in various prac
engineering components? Where does the maximum stress o
and what is the physical character of the deformed shape of
body?

Chapter 9 generalizes the theory of beam-columns to incl
thermal effects and the final Chapter 10 discusses thermoelas
from the perspective of thermodynamics. In particular, t
coupled heat conduction equation is derived from thermodyna
considerations and the student is also introduced to variatio
theorems, the uniqueness theorem and the reciprocal theo
Overall, the technical and mathematical level of the mate
makes this book most suitable for a first year graduate le
course, though the more mathematically talented senior un
graduates may also be able to assimilate it with appropriate g
ance.

Engineering designers routinely make use of ‘‘everyday in
ition’’ to identify structurally sound methods of transmittin
purely mechanical loads, but the effects of thermal loading
much harder to predict without detailed analysis. Also, what
pear to be relatively modest temperature variations can caus
rious states of stress. There is therefore an excellent case
greater representation of thermal stresses in engineering de
curricula and the authors are to be complimented on providing
with a suitable text for this purpose.
of
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